skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 12 until 2:00 AM ET on Friday, June 13 due to maintenance. We apologize for the inconvenience.


Title: Neutron Scattering Study of the kagome metal Sc3Mn3Al7Si5
Sc 3 Mn 3 Al 7 Si 5 is a rare example of a correlated metal in which the Mn moments form a kagome lattice. The absence of magnetic ordering to the lowest temperatures suggests that geometrical frustration of magnetic interactions may lead to strong magnetic fluctuations. We have performed inelastic neutron scattering measurements on Sc 3 Mn 3 Al 7 Si 5 , finding that phonon scattering dominates for energies from ∼20–50 meV. These results are in good agreement with ab initio calculations of the phonon dispersions and densities of states, and as well reproduce the measured specific heat. A weak magnetic signal was detected at energies less than ∼10 meV, present only at the lowest temperatures. The magnetic signal is broad and quasielastic, as expected for metallic paramagnets.  more » « less
Award ID(s):
1807451
PAR ID:
10299911
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Physical review
Volume:
104
ISSN:
2470-0010
Page Range / eLocation ID:
134305
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Sc 3 Mn 3 Al 7 Si 5 is a rare example of a correlated metal in which the Mn moments form a kagome lattice. The absence of magnetic ordering to the lowest temperatures suggests that geometrical frustration of magnetic interactions may lead to strong magnetic fluctuations. We have performed inelastic neutron scattering measurements on Sc 3 Mn 3 Al 7 Si 5 , finding that phonon scattering dominates for energies from ∼20–50 meV. These results are in good agreement with ab initio calculations of the phonon dispersions and densities of states, and as well reproduce the measured specific heat. A weak magnetic signal was detected at energies less than ∼10 meV, present only at the lowest temperatures. The magnetic signal is broad and quasielastic, as expected for metallic paramagnets 
    more » « less
  2. We report on the near-infrared intersubband (ISB) absorption properties of strain-free Sc0.14Al0.86N/GaN multiple quantum wells (MQWs) grown on c-plane GaN substrates by molecular beam epitaxy. These MQWs exhibit strong, sharp, and tunable absorption energies between 515 meV and 709 meV, for well widths ranging from 7 nm to 1.5 nm, respectively. Observation of ISB absorption in ultra-thin Sc0.14Al0.86N/GaN MQWs not only extends the near-infrared range accessible with Sc-containing nitrides but also highlights the challenges of growing nanometer-thick GaN quantum wells. We explore the effects of growth temperature on absorption characteristics and find that substrate temperatures above 600°C significantly enhance ISB absorption intensity but also introduce an energy redshift for the narrowest wells. The redshift is attributed to increased interface roughness due to ScAlN surface morphology degradation at higher temperatures. Additionally, a comparison of experimental results with simulated band-structures indicates that the magnitude of net polarization rises faster with Sc-composition than previously suggested by theoretical calculations. This study advances the prospects of ScAlN/GaN heterostructures for novel photonic devices in the technologically important near-infrared range. 
    more » « less
  3. Abstract Bosonic Dirac materials are testbeds for dissipationless spin-based electronics. In the quasi two-dimensional honeycomb lattice of CrX 3 (X = Cl, Br, I), Dirac magnons have been predicted at the crossing of acoustical and optical spin waves, analogous to Dirac fermions in graphene. Here we show that, distinct from CrBr 3 and CrI 3 , gapless Dirac magnons are present in bulk CrCl 3 , with inelastic neutron scattering intensity at low temperatures approaching zero at the Dirac K point. Upon warming, magnon-magnon interactions induce strong renormalization and decreased lifetimes, with a ~25% softening of the upper magnon branch intensity from 5 to 50 K, though magnon features persist well above T N . Moreover, on cooling below ~50 K, an anomalous increase in the a -axis lattice constant and a hardening of a ~26 meV phonon feature are observed, indicating magnetoelastic and spin-phonon coupling arising from an increase in the in-plane spin correlations that begins tens of Kelvin above T N . 
    more » « less
  4. Abstract We review comprehensive observations of electromagnetic ion cyclotron (EMIC) wave-driven energetic electron precipitation using data collected by the energetic electron detector on the Electron Losses and Fields InvestigatioN (ELFIN) mission, two polar-orbiting low-altitude spinning CubeSats, measuring 50-5000 keV electrons with good pitch-angle and energy resolution. EMIC wave-driven precipitation exhibits a distinct signature in energy-spectrograms of the precipitating-to-trapped flux ratio: peaks at >0.5 MeV which are abrupt (bursty) (lasting ∼17 s, or$$\Delta L\sim 0.56$$ Δ L 0.56 ) with significant substructure (occasionally down to sub-second timescale). We attribute the bursty nature of the precipitation to the spatial extent and structuredness of the wave field at the equator. Multiple ELFIN passes over the same MLT sector allow us to study the spatial and temporal evolution of the EMIC wave - electron interaction region. Case studies employing conjugate ground-based or equatorial observations of the EMIC waves reveal that the energy of moderate and strong precipitation at ELFIN approximately agrees with theoretical expectations for cyclotron resonant interactions in a cold plasma. Using multiple years of ELFIN data uniformly distributed in local time, we assemble a statistical database of ∼50 events of strong EMIC wave-driven precipitation. Most reside at$$L\sim 5-7$$ L 5 7 at dusk, while a smaller subset exists at$$L\sim 8-12$$ L 8 12 at post-midnight. The energies of the peak-precipitation ratio and of the half-peak precipitation ratio (our proxy for the minimum resonance energy) exhibit an$$L$$ L -shell dependence in good agreement with theoretical estimates based on prior statistical observations of EMIC wave power spectra. The precipitation ratio’s spectral shape for the most intense events has an exponential falloff away from the peak (i.e., on either side of$$\sim 1.45$$ 1.45 MeV). It too agrees well with quasi-linear diffusion theory based on prior statistics of wave spectra. It should be noted though that this diffusive treatment likely includes effects from nonlinear resonant interactions (especially at high energies) and nonresonant effects from sharp wave packet edges (at low energies). Sub-MeV electron precipitation observed concurrently with strong EMIC wave-driven >1 MeV precipitation has a spectral shape that is consistent with efficient pitch-angle scattering down to ∼ 200-300 keV by much less intense higher frequency EMIC waves at dusk (where such waves are most frequent). At ∼100 keV, whistler-mode chorus may be implicated in concurrent precipitation. These results confirm the critical role of EMIC waves in driving relativistic electron losses. Nonlinear effects may abound and require further investigation. 
    more » « less
  5. null (Ed.)
    Abstract We report a combined experimental and computational study of the optical properties of individual silicon telluride (Si 2 Te 3 ) nanoplates. The p-type semiconductor Si 2 Te 3 has a unique layered crystal structure with hexagonal closed-packed Te sublattices and Si–Si dimers occupying octahedral intercalation sites. The orientation of the silicon dimers leads to unique optical and electronic properties. Two-dimensional Si 2 Te 3 nanoplates with thicknesses of hundreds of nanometers and lateral sizes of tens of micrometers are synthesized by a chemical vapor deposition technique. At temperatures below 150 K, the Si 2 Te 3 nanoplates exhibit a direct band structure with a band gap energy of 2.394 eV at 7 K and an estimated free exciton binding energy of 150 meV. Polarized reflection measurements at different temperatures show anisotropy in the absorption coefficient due to an anisotropic orientation of the silicon dimers, which is in excellent agreement with theoretical calculations of the dielectric functions. Polarized Raman measurements of single Si 2 Te 3 nanoplates at different temperatures reveal various vibrational modes, which agree with density functional perturbation theory calculations. The unique structural and optical properties of nanostructured Si 2 Te 3 hold great potential applications in optoelectronics and chemical sensing. 
    more » « less