skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ultrasound Imaging by Thermally Tunable Phononic Crystal Lens
This work demonstrates the detections and mappings of a solid object using a thermally tunable solid-state phononic crystal lens at low frequency for potential use in future long-distance detection. The phononic crystal lens is infiltrated with a polyvinyl alcohol-based poly n-isopropyl acrylamide (PVA-PNIPAm) bulk hydrogel polymer. The hydrogel undergoes a volumetric phase transition due to a temperature change leading to a temperature-dependent sound velocity and density. The temperature variation from 20 °C to 39 °C changes the focal length of the tunable solid-state lens by 1 cm in the axial direction. This thermo-reversible tunable focal length lens was used in a monostatic setup for one- and two-dimensional mapping scans in both frequency domain echo-intensity and temporal domain time-of-flight modes. The experimental results illustrated 1.03 ± 0.15λ and 2.35 ± 0.28λ on the lateral and axial minimum detectable object size. The experiments using the tunable lens demonstrate the capability to detect objects by changing the temperature in water without translating an object, source, or detector. The time-of-flight mode modality using the tunable solid-state phononic lens increases the signal-to-noise ratio compared to a conventional phononic crystal lens.  more » « less
Award ID(s):
1741677
PAR ID:
10300033
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Journal of Molecular Sciences
Volume:
22
Issue:
15
ISSN:
1422-0067
Page Range / eLocation ID:
7966
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Khoo, Iam Choon (Ed.)
    Lenses with tunable focal lengths play important roles in nature as well as modern technologies. In recent years, the demand for electrically tunable lenses and lens arrays has grown, driven by the increasing interest in augmented and virtual reality, as well as sensing applications. In this paper, we present a novel type of electrically tunable microlens utilizing polymer-stabilized chiral ferroelectric nematic liquid crystal. The lens offers a fast response time (5ms) and the focal length can be tuned by applying an in-plane electric field. The electrically induced change in the lens shape, facilitated by the remarkable sensitivity of the chiral ferroelectric nematic to electric fields, enables the tunable focal length capability. The achieved performance of this lens represents a significant advancement compared to electrowetting-based liquid lenses and opens exciting prospects in various fields, including biomimetic optics, security printing, solar energy concentration, and AR/VR devices. 
    more » « less
  2. Many hardware approaches have been developed for implementing hyperspectral imaging on fluorescence microscope systems; each with tradeoffs in spectral sensitivity and spectral, spatial, and temporal sampling. For example, tunable filter-based systems typically have limited wavelength switching speeds and sensitivities that preclude high-speed spectral imaging. Here, we present a novel approach combining multiple illumination wavelengths using solid state LEDs in a 2-mirror configuration similar to a Cassegrain reflector assembly. This approach provides spectral discrimination by scanning a range of fluorescence excitation wavelengths, which we have previously shown can improve spectral image acquisition time compared to traditional fluorescence emission-scanning hyperspectral imaging. In this work, the geometry of the LED and other optical components was optimized. A model of the spectral illuminator was designed using TracePro ray tracing software (Lambda Research Corp.) that included an emitter, lens, Spherical mirror, flat mirror, and liquid light guide input. A parametric sensitivity study was performed to optimize the optical throughput varying the LED viewing angle, properties of the Spherical reflectors, the lens configuration, focal length, and position. The following factors significantly affected the optical throughput: LED viewing angle, lens position, and lens focal length. Several types of configurations were evaluated, and an optimized lens and LED position were determined. Initial optimization results indicate that a 10% optical transmission can be achieved for either a 16 or 32 wavelength system. Future work will include continuing to optimize the ray trace model, prototyping, and experimental testing of the optimized configuration. 
    more » « less
  3. This work provides the design of a multifocal display that can create a dense stack of focal planes in a single shot. We achieve this using a novel computational lens that provides spatial selectivity in its focal length, i.e, the lens appears to have different focal lengths across points on a display behind it. This enables a multifocal display via an appropriate selection of the spatially-varying focal length, thereby avoiding time multiplexing techniques that are associated with traditional focus tunable lenses. The idea central to this design is a modification of a Lohmann lens, a focus tunable lens created with two cubic phase plates that translate relative to each other. Using optical relays and a phase spatial light modulator, we replace the physical translation of the cubic plates with an optical one, while simultaneously allowing for different pixels on the display to undergo different amounts of translations and, consequently, different focal lengths. We refer to this design as a Split-Lohmann multifocal display. Split-Lohmann displays provide a large étendue as well as high spatial and depth resolutions; the absence of time multiplexing and the extremely light computational footprint for content processing makes it suitable for video and interactive experiences. Using a lab prototype, we show results over a wide range of static, dynamic, and interactive 3D scenes, showcasing high visual quality over a large working range. 
    more » « less
  4. A reconfigurable phononic crystal (PnC) is proposed where elastic properties can be modulated by rotation of asymmetric solid scatterers immersed in water. The scatterers are metallic rods with a cross section of 120◦ circular sector. Orientation of each rod is independently controlled by an external electric motor that allows continuous variation of the local scattering parameters and dispersion of sound in the entire crystal. Due to asymmetry of the scatterers, the crystal band structure possesses highly anisotropic band gaps. Synchronous rotation of all the scatterers by a definite angle changes the regime of reflection to the regime of transmission and vice versa. The same mechanically tunable structure functions as a gradient index medium by incremental, angular reorientation of rods along both row and column, and, subsequently, can serve as a tunable acoustic lens, an acoustic beam splitter, and finally an acoustic beam steerer. 
    more » « less
  5. The focal track sensor is a monocular and computationally efficient depth sensor that is based on defocus controlled by a liquid membrane lens. It synchronizes small lens oscillations with a photosensor to produce real-time depth maps by means of differential defocus, and it couples these oscillations with bigger lens deformations that adapt the defocus working range to track objects over large axial distances. To create the focal track sensor, we derive a texture-invariant family of equations that relate image derivatives to scene depth when a lens changes its focal length differentially. Based on these equations, we design a feed-forward sequence of computations that: robustly incorporates image derivatives at multiple scales; produces confidence maps along with depth; and can be trained endto- end to mitigate against noise, aberrations, and other non-idealities. Our prototype with 1-inch optics produces depth and confidence maps at 100 frames per second over an axial range of more than 75cm. 
    more » « less