skip to main content


Title: Manufacturing and Characterization of Hybrid Bulk Voxelated Biomaterials Printed by Digital Anatomy 3D Printing
The advent of 3D digital printers has led to the evolution of realistic anatomical organ shaped structures that are being currently used as experimental models for rehearsing and preparing complex surgical procedures by clinicians. However, the actual material properties are still far from being ideal, which necessitates the need to develop new materials and processing techniques for the next generation of 3D printers optimized for clinical applications. Recently, the voxelated soft matter technique has been introduced to provide a much broader range of materials and a profile much more like the actual organ that can be designed and fabricated voxel by voxel with high precision. For the practical applications of 3D voxelated materials, it is crucial to develop the novel high precision material manufacturing and characterization technique to control the mechanical properties that can be difficult using the conventional methods due to the complexity and the size of the combination of materials. Here we propose the non-destructive ultrasound effective density and bulk modulus imaging to evaluate 3D voxelated materials printed by J750 Digital Anatomy 3D Printer of Stratasys. Our method provides the design map of voxelated materials and substantially broadens the applications of 3D digital printing in the clinical research area.  more » « less
Award ID(s):
1741677
NSF-PAR ID:
10300041
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Polymers
Volume:
13
Issue:
1
ISSN:
2073-4360
Page Range / eLocation ID:
123
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Additive manufacturing, or 3D printing, has become significantly more commonplace in tissue engineering over the past decade, as a variety of new printing materials have been developed. In extrusion‐based printing, materials are used for applications that range from cell free printing to cell‐laden bioinks that mimic natural tissues. Beyond single tissue applications, multi‐material extrusion based printing has recently been developed to manufacture scaffolds that mimic tissue interfaces. Despite these advances, some material limitations prevent wider adoption of the extrusion‐based 3D printers currently available. This progress report provides an overview of this commonly used printing strategy, as well as insight into how this technique can be improved. As such, it is hoped that the prospective report guides the inclusion of more rigorous material characterization prior to printing, thereby facilitating cross‐platform utilization and reproducibility.

     
    more » « less
  2. Amziane, S. ; Merta, I. ; Page, J. (Ed.)
    Natural earth-fiber building assemblies such as light straw clay, hempcrete, and clay-plastered straw bales incorporate vegetable by-products that are mixed with geological binders, traditionally used as an insulative infill in building construction. As a geo- and bio-based insulative infill method composed mostly of fiber, heat transfer coefficients are lower than mass materials, making it a compatible assembly that meets energy code requirements. Furthermore, due to their permeability, these materials exhibit high hygric capacity, providing regulated indoor temperatures and relative humidity levels, thus showing a promising future for socially just and healthier built environments. Despite these advantages, the use of earth-fiber building materials in digital construction is still underdeveloped. In the past few years, 3D-printed earth has gained an increasing interest, however, high contents of fibers in earth mixtures have yet to be fully tested and characterized. This paper presents an experimental workflow to characterize fiber-earth composites for 3D printed assemblies, using natural soils infused with natural fibers. The paper begins with a literature review of a range of fibers: straw, hemp, kenaf, sisal, and banana leaves, as well as naturally occurring biopolymer additives. The experimental setup includes manual extrudability and buildability tests, to identify optimal mix designs that are then tested for their printability and buckling using clay 3D printers. As a final deliverable, first pass geometric studies showcase the lightweight and structural possibilities of each material. The significance of this research lies in the development of a methodology for identifying novel mix design for digital fabrication, by increasing carbon storing vegetable fiber content within digital earth, and by creating a range of natural 3D printed assembly types: from mass-insulation walls to paper-thin lightweight partition assemblage. 
    more » « less
  3. null (Ed.)
    Purpose The purpose of this research is to develop a new slicing scheme for the emerging cooperative three-dimensional (3D) printing platform that has multiple mobile 3D printers working together on one print job. Design/methodology/approach Because the traditional lay-based slicing scheme does not work for cooperative 3D printing, a chunk-based slicing scheme is proposed to split the print job into chunks so that different mobile printers can print different chunks simultaneously without interfering with each other. Findings A chunk-based slicer is developed for two mobile 3D printers to work together cooperatively. A simulator environment is developed to validate the developed slicer, which shows the chunk-based slicer working effectively, and demonstrates the promise of cooperative 3D printing. Research limitations/implications For simplicity, this research only considered the case of two mobile 3D printers working together. Future research is needed for a slicing and scheduling scheme that can work with thousands of mobile 3D printers. Practical implications The research findings in this work demonstrate a new approach to 3D printing. By enabling multiple mobile 3D printers working together, the printing speed can be significantly increased and the printing capability (for multiple materials and multiple components) can be greatly enhanced. Social implications The chunk-based slicing algorithm is critical to the success of cooperative 3D printing, which may enable an autonomous factory equipped with a swarm of autonomous mobile 3D printers and mobile robots for autonomous manufacturing and assembly. Originality/value This work presents a new approach to 3D printing. Instead of printing layer by layer, each mobile 3D printer will print one chunk at a time, which provides the much-needed scalability for 3D printing to print large-sized object and increase the printing speed. The chunk-based approach keeps the 3D printing local and avoids the large temperature gradient and associated internal stress as the size of the print increases. 
    more » « less
  4. Abstract

    High entropy oxides are a class of materials distinguished by the use of configurational entropy to drive material synthesis. These materials are being examined for their exciting physiochemical properties and hold promise in numerous fields, such as chemical sensing, electronics, and catalysis. Patterning and integration of high entropy materials into devices and platforms can be difficult due to their thermal sensitivity and incompatibility with many conventional thermally-based processing techniques. In this work, we present a laser-based technique, laser-induced thermal voxels, that combines the synthesis and patterning of high entropy oxides into a single process step, thereby allowing patterning of high entropy materials directly onto substrates. As a proof-of-concept, we target the synthesis and patterning of a well-characterized rock salt-phase high entropy oxide, (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O, as well as a spinel-phase high entropy oxide, (Mg0.2Ni0.2Co0.2Cu0.2Zn0.2)Cr2O4. We show through electron microscopy and x-ray analysis that the materials created are atomically homogenous and are primarily of the rock salt or spinel phase. These findings show the efficacy of laser induced thermal voxel processing for the synthesis and patterning of high entropy materials and enable new routes for integration of high entropy materials within microscale platform and devices.

     
    more » « less
  5. Abstract Acquiring detailed 3D images of samples is needed for conducting thorough investigations in a wide range of applications. Doing so using nondestructive methods such as X-ray computed tomography (X-ray CT) has resolution limitations. Destructive methods, which work based on consecutive delayering and imaging of the sample, face a tradeoff between throughput and resolution. Using focused ion beam (FIB) for delayering, although high precision, is low throughput. On the other hand, mechanical methods that can offer fast delayering, are low precision and may put the sample integrity at risk. Herein, we propose to use femtosecond laser ablation as a delayering method in combination with optical and confocal microscopy as the imaging technique for performing rapid 3D imaging. The use of confocal microscopy provides several advantages. First, it eliminates the 3D image distortion resulting from non-flat layers, caused by the difference in laser ablation rate of different materials. It further allows layer height variations to be maintained within a small range. Finally, it enables material characterization based on the processing of material ablation rate at different locations. The proposed method is applied on a printed circuit board (PCB), and the results are validated and compared with the X-ray CT image of the PCB part. 
    more » « less