skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Supernova neutrino signals based on long-term axisymmetric simulations
ABSTRACT We study theoretical neutrino signals from core-collapse supernova (CCSN) computed using axisymmetric CCSN simulations that cover the post-bounce phase up to ∼4 s. We provide basic quantities of the neutrino signals such as event rates, energy spectra, and cumulative number of events at some terrestrial neutrino detectors, and then discuss some new features in the late phase that emerge in our models. Contrary to popular belief, neutrino emissions in the late phase are not always steady, but rather have temporal fluctuations, the vigour of which hinges on the CCSN model and neutrino flavour. We find that such temporal variations are not primarily driven by proto-neutron star convection, but by fallback accretion in exploding models. We assess the detectability of these temporal variations, and find that IceCube is the most promising detector with which to resolve them. We also update fitting formulae first proposed in our previous paper for which the total neutrino energy emitted at the CCSN source is estimated from the cumulative number of events in each detector. This will be a powerful technique with which to analyse real observations, particularly for low-statistics data.  more » « less
Award ID(s):
1804048
PAR ID:
10300089
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
506
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
1462 to 1479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Based on our recent three-dimensional core-collapse supernova (CCSN) simulations including both exploding and non-exploding models, we study the detailed neutrino signals in representative terrestrial neutrino observatories, namely Super-Kamiokande (Hyper-Kamiokande), DUNE, JUNO, and IceCube. We find that the physical origin of difference in the neutrino signals between 1D and 3D is mainly proto-neutron-star convection. We study the temporal and angular variations of the neutrino signals and discuss the detectability of the time variations driven by the spiral standing accretion shock instability (spiral SASI) when it emerges for non-exploding models. In addition, we determine that there can be a large angular asymmetry in the event rate ($${\gtrsim} 50 {{\ \rm per\ cent}}$$), but the time-integrated signal has a relatively modest asymmetry ($${\lesssim} 20 {{\ \rm per\ cent}}$$). Both features are associated with the lepton-number emission self-sustained asymmetry and the spiral SASI. Moreover, our analysis suggests that there is an interesting correlation between the total neutrino energy (TONE) and the cumulative number of neutrino events in each detector, a correlation that can facilitate data analyses of real observations. We demonstrate the retrieval of neutrino energy spectra for all flavours of neutrino by applying a novel spectrum reconstruction technique to the data from multiple detectors. We find that this new method is capable of estimating the TONE within the error of ∼20 per cent if the distance to the CCSN is ≲6 kpc. 
    more » « less
  2. null (Ed.)
    ABSTRACT We present a new method by which to retrieve energy spectrum for all falvours of neutrinos from core-collapse supernova (CCSN). In the retrieval process, we do not assume any analytic formulas to express the energy spectrum of neutrinos but rather take a direct way of spectrum reconstruction from the observed data; the singular value decomposition algorithm with a newly developed adaptive energy-gridding technique is adopted. We employ three independent reaction channels having different flavour sensitivity to neutrinos. Two reaction channels, inverse beta decay on proton and elastic scattering on electrons, from a water Cherenkov detector such as Super-Kamiokande (SK) and Hyper-Kamiokande (HK), and a charged current reaction channel with Argon from the Deep Underground Neutrino Experiment (DUNE) are adopted. Given neutrino oscillation models, we iteratively search the neutrino energy spectra at the CCSN source until they provide the consistent event counts in the three reaction channels. We test the capability of our method by demonstrating the spectrum retrieval to a theoretical neutrino data computed by our recent three-dimensional CCSN simulation. Although the energy spectrum with either electron-type or electron-type antineutrinos at the CCSN source has relatively large error compared to that of other species, the joint analysis with HK + DUNE or SK + DUNE will provide precise energy spectrum of all flavours of neutrinos at the source. Finally, we discuss perspectives for improvements of our method by using neutrino data of other detectors. 
    more » « less
  3. Abstract The two-moment method is widely used to approximate the full neutrino transport equation in core-collapse supernova (CCSN) simulations, and different closures lead to subtle differences in the simulation results. In this paper, we compare the effects of closure choices on various physical quantities in 1D and 2D time-dependent CCSN simulations with our multigroup radiation hydrodynamics code Fornax. We find that choices of the third-order closure relations influence the time-dependent simulations only slightly. Choices of the second-order closure relation have larger consequences than choices of the third-order closure, but these are still small compared to the remaining variations due to ambiguities in some physical inputs such as the nuclear equation of state. We also find that deviations in Eddington factors are not monotonically related to deviations in physical quantities, which means that simply comparing the Eddington factors does not inform one concerning which closure is better. 
    more » « less
  4. Abstract Liquid xenon (LXe) is a well-studied detector medium to search for rare events in dark matter and neutrino physics. Two-phase xenon time projection chambers (TPCs) can detect electronic and nuclear recoils with energy down to kilo-electron volts (keV). In this paper, we characterize the response of a single-phase liquid xenon proportional scintillation counter (LXePSC), which produces electroluminescence directly in the liquid, to detect electronic recoils at low energies. Our design uses a thin (10–25 μm diameter), central anode wire in a cylindrical LXe target where ionization electrons, created from radiation particles, drift radially towards the anode, and electroluminescence is produced. Both the primary scintillation (S1) and electroluminescence (S2) are detected by photomultiplier tubes (PMTs) surrounding the LXe target. Up to 17 photons are produced per electron, obtained with a 10 μm diameter anode wire, allowing for the highly efficient detection of electronic recoils from beta decays of a tritium source down to ∼ 1 keV. Single electrons, from photoemission of the cathode wires, are observed at a gain of 1.8 photoelectrons (PE) per electron. The delayed signals following the S2 signals are dominated by single-photon-like hits, without evidence for electron signals observed in the two-phase xenon TPCs. We discuss the potential application of such a LXePSC for reactor neutrino detection via Coherent Elastic Neutrino Nucleus Scattering (CEνNS). 
    more » « less
  5. Abstract Beginning in 2016, the IceCube Neutrino Observatory has sent out alerts in real time containing the information of high-energy (E≳ 100 TeV) neutrino candidate events with moderate to high (≳30%) probability of astrophysical origin. In this work, we use a recent catalog of such alert events, which, in addition to events announced in real time, includes events that were identified retroactively and covers the time period of 2011–2020. We also search for additional, lower-energy neutrinos from the arrival directions of these IceCube alerts. We show how performing such an analysis can constrain the contribution of rare populations of cosmic neutrino sources to the diffuse astrophysical neutrino flux. After searching for neutrino emission coincident with these alert events on various timescales, we find no significant evidence of either minute-scale or day-scale transient neutrino emission or of steady neutrino emission in the direction of these alert events. This study also shows how numerous a population of neutrino sources has to be to account for the complete astrophysical neutrino flux. Assuming that sources have the same luminosity, anE−2.5neutrino spectrum, and number densities that follow star formation rates, the population of sources has to be more numerous than 7 × 10−9Mpc−3. This number changes to 3 × 10−7Mpc−3if number densities instead have no cosmic evolution. 
    more » « less