skip to main content


This content will become publicly available on July 1, 2024

Title: Low energy electronic recoils and single electron detection with a liquid Xenon proportional scintillation counter
Abstract

Liquid xenon (LXe) is a well-studied detector medium to search for rare events in dark matter and neutrino physics. Two-phase xenon time projection chambers (TPCs) can detect electronic and nuclear recoils with energy down to kilo-electron volts (keV). In this paper, we characterize the response of a single-phase liquid xenon proportional scintillation counter (LXePSC), which produces electroluminescence directly in the liquid, to detect electronic recoils at low energies. Our design uses a thin (10–25 μm diameter), central anode wire in a cylindrical LXe target where ionization electrons, created from radiation particles, drift radially towards the anode, and electroluminescence is produced. Both the primary scintillation (S1) and electroluminescence (S2) are detected by photomultiplier tubes (PMTs) surrounding the LXe target. Up to 17 photons are produced per electron, obtained with a 10 μm diameter anode wire, allowing for the highly efficient detection of electronic recoils from beta decays of a tritium source down to ∼ 1 keV. Single electrons, from photoemission of the cathode wires, are observed at a gain of 1.8 photoelectrons (PE) per electron. The delayed signals following the S2 signals are dominated by single-photon-like hits, without evidence for electron signals observed in the two-phase xenon TPCs. We discuss the potential application of such a LXePSC for reactor neutrino detection via Coherent Elastic Neutrino Nucleus Scattering (CEνNS).

 
more » « less
Award ID(s):
2137911
NSF-PAR ID:
10471351
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IOP Publishing Ltd and Sissa Medialab
Date Published:
Journal Name:
Journal of Instrumentation
Volume:
18
Issue:
07
ISSN:
1748-0221
Page Range / eLocation ID:
P07027
Subject(s) / Keyword(s):
["Noble liquid detectors (scintillation, ionization, double-phase)","Charge transport and\nmultiplication in liquid media","Charge transport, multiplication and electroluminescence in rare\ngases and liquids","Neutron detectors (cold, thermal, fast neutrons)"]
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A double-phase argon Time Projection Chamber (TPC), with an active mass of 185 g, has been designed and constructed for the Recoil Directionality (ReD) experiment. The aim of the ReD project is to investigate the directional sensitivity of argon-based TPCs via columnar recombination to nuclear recoils in the energy range of interest (20– $$200\,\hbox {keV}_{nr}$$ 200 keV nr ) for direct dark matter searches. The key novel feature of the ReD TPC is a readout system based on cryogenic Silicon Photomultipliers (SiPMs), which are employed and operated continuously for the first time in an argon TPC. Over the course of 6 months, the ReD TPC was commissioned and characterised under various operating conditions using $$\gamma $$ γ -ray and neutron sources, demonstrating remarkable stability of the optical sensors and reproducibility of the results. The scintillation gain and ionisation amplification of the TPC were measured to be $$g_1 = (0.194 \pm 0.013)$$ g 1 = ( 0.194 ± 0.013 ) photoelectrons/photon and $$g_2 = (20.0 \pm 0.9)$$ g 2 = ( 20.0 ± 0.9 ) photoelectrons/electron, respectively. The ratio of the ionisation to scintillation signals (S2/S1), instrumental for the positive identification of a candidate directional signal induced by WIMPs, has been investigated for both nuclear and electron recoils. At a drift field of 183 V/cm, an S2/S1 dispersion of 12% was measured for nuclear recoils of approximately 60– $$90\,\hbox {keV}_{nr}$$ 90 keV nr , as compared to 18% for electron recoils depositing 60 keV of energy. The detector performance reported here meets the requirements needed to achieve the principal scientific goals of the ReD experiment in the search for a directional effect due to columnar recombination. A phenomenological parameterisation of the recombination probability in LAr is presented and employed for modeling the dependence of scintillation quenching and charge yield on the drift field for electron recoils between 50–500 keV and fields up to 1000 V/cm. 
    more » « less
  2. null (Ed.)
    DarkSide-50 has demonstrated the high potential of dual-phase liquid argon time projection chambers in exploring interactions of WIMPs in the GeV/c2 mass range. The technique, based on the detection of the ionization signal amplified via electroluminescence in the gas phase, allows to explore recoil energies down to the sub-keV range. We report here on the DarkSide-50 measurement of the ionization yield of electronic recoils down to about 180 eVer, exploiting 37Ar and 39Ar decays, and extrapolated to a few ionization electrons with the Thomas-Imel box model. Moreover, we present the determination of the ionization response to nuclear recoils down to ∼ 500 eVnr , the lowest ever achieved in liquid argon, using in situ neutron calibration sources and external datasets from neutron beam experiments. 
    more » « less
  3. null (Ed.)
    Abstract Proportional electroluminescence (EL) in noble gases is used in two-phase detectors for dark matter searches to record (in the gas phase) the ionization signal induced by particle scattering in the liquid phase. The “standard” EL mechanism is considered to be due to noble gas excimer emission in the vacuum ultraviolet (VUV). In addition, there are two alternative mechanisms, producing light in the visible and near infrared (NIR) ranges. The first is due to bremsstrahlung of electrons scattered on neutral atoms (“neutral bremsstrahlung”, NBrS). The second, responsible for electron avalanche scintillation in the NIR at higher electric fields, is due to transitions between excited atomic states. In this work, we have for the first time demonstrated two alternative techniques of the optical readout of two-phase argon detectors, in the visible and NIR range, using a silicon photomultiplier matrix and electroluminescence due to either neutral bremsstrahlung or avalanche scintillation. The amplitude yield and position resolution were measured for these readout techniques, which allowed to assess the detection threshold for electron and nuclear recoils in two-phase argon detectors for dark matter searches. To the best of our knowledge, this is the first practical application of the NBrS effect in detection science. 
    more » « less
  4. null (Ed.)
    Abstract: Proportional electroluminescence (EL) in noble gases is used in two-phase detectors for dark matter searches to record (in the gas phase) the ionization signal induced by particle scattering in the liquid phase. The “standard” EL mechanism is considered to be due to noble gas excimer emission in the vacuum ultraviolet (VUV). In addition, there are two alternative mechanisms, producing light in the vis- ible and near infrared (NIR) ranges. The first is due to bremsstrahlung of electrons scattered on neutral atoms (“neu- tral bremsstrahlung”, NBrS). The second, responsible for electron avalanche scintillation in the NIR at higher electric fields, is due to transitions between excited atomic states. In this work, we have for the first time demonstrated two alternative techniques of the optical readout of two-phase argon detectors, in the visible and NIR range, using a sili- con photomultiplier matrix and electroluminescence due to either neutral bremsstrahlung or avalanche scintillation. The amplitude yield and position resolution were measured for these readout techniques, which allowed to assess the detec- tion threshold for electron and nuclear recoils in two-phase argon detectors for dark matter searches. To the best of our knowledge, this is the first practical application of the NBrS effect in detection science. 
    more » « less
  5. Baracchini, Elisabetta (Ed.)

    The Scintillating Bubble Chamber (SBC) collaboration is developing liquid-noble bubble chambers for the detection of sub-keV nuclear recoils. These detectors benefit from the electron recoil rejection inherent in moderately-superheated bubble chambers with the addition of energy reconstruction provided from the scintillation signal. The ability to measure low-energy nuclear recoils allows the search for GeV-scale dark matter and the measurement of coherent elastic neutrino-nucleus scattering on argon from MeV-scale reactor antineutrinos. The first physics-scale detector, SBC-LAr10, is in the commissioning phase at Fermilab, where extensive engineering and calibration studies will be performed. In parallel, a functionally identical low-background version, SBC-SNOLAB, is being built for a dark matter search underground at SNOLAB. SBC-SNOLAB, with a 10 kg-yr exposure, will have sensitivity to a dark matter–nucleon cross section of 2×10−42 cm2 at 1 GeV/c2 dark matter mass, and future detectors could reach the boundary of the argon neutrino fog with a tonne-yr exposure. In addition, the deployment of an SBC detector at a nuclear reactor could enable neutrino physics investigations including measurements of the weak mixing angle and searches for sterile neutrinos, the neutrino magnetic moment, and the light Z’ gauge boson.

     
    more » « less