skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Photochemical synthesis of an epigenetic focused tetrahydroquinoline library
Discovery of epigenetic chemical probes is an important area of research with potential to deliver drugs for a multitude of diseases. However, commercially available libraries frequently used in drug discovery campaigns contain molecules that are focused on a narrow range of chemical space primarily driven by ease of synthesis and previously targeted enzyme classes ( e.g. , kinases) resulting in low hit rates for epigenetic targets. Here we describe the design and synthesis of a compound collection that augments current screening collections by the inclusion of privileged isosteres for epigenetic targets.  more » « less
Award ID(s):
1827457
PAR ID:
10300459
Author(s) / Creator(s):
;
Date Published:
Journal Name:
RSC Medicinal Chemistry
Volume:
12
Issue:
10
ISSN:
2632-8682
Page Range / eLocation ID:
1780 to 1786
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Microscopy approaches are frequently used to decipher the localization and quantify the abundance of biologically relevant molecular targets within single cells. Recent research has applied many optical imaging techniques to specifically visualize epigenetic modifications, the mechanisms by which organisms control gene expression in response to environmental factors. While many molecular and omics-based approaches are used to understand epigenetic mechanisms, imaging approaches provide spatial information that supplies greater context for discerning function. Thus, labeling approaches have been developed to quantify and visualize epigenetic targets using various fluorescence microscopy, electron microscopy, and super-resolution microscopy techniques. Here, we synthesize information about microscopy methods that enable visualization of epigenetic marks including DNA methylation, histone modifications, and localization of RNAs, which provide insights into mechanisms involved in chromatin remodeling and gene expression. The ability to determine how and where specific epigenetic marks manifest structurally and functionally in cells demonstrates the power of microscopy in aiding our understanding of epigenetic processes. 
    more » « less
  2. null (Ed.)
    Data-driven discovery of cancer driver genes, including tumor suppressor genes (TSGs) and oncogenes (OGs), is imperative for cancer prevention, diagnosis, and treatment. Although epigenetic alterations are important for tumor initiation and progression, most known driver genes were identified based on genetic alterations alone. Here, we developed an algorithm, DORGE (Discovery of Oncogenes and tumor suppressoR genes using Genetic and Epigenetic features), to identify TSGs and OGs by integrating comprehensive genetic and epigenetic data. DORGE identified histone modifications as strong predictors for TSGs, and it found missense mutations, super enhancers, and methylation differences as strong predictors for OGs. We extensively validated DORGE-predicted cancer driver genes using independent functional genomics data. We also found that DORGE-predicted dual-functional genes (both TSGs and OGs) are enriched at hubs in protein-protein interaction and drug-gene networks. Overall, our study has deepened the understanding of epigenetic mechanisms in tumorigenesis and revealed previously undetected cancer driver genes. 
    more » « less
  3. Abstract Many of the greatest challenges facing society today likely have molecular solutions that await discovery. However, the process of identifying and manufacturing such molecules has remained slow and highly specialist dependent. Interfacing the fields of artificial intelligence (AI) and synthetic organic chemistry has the potential to powerfully address both limitations. The Molecule Maker Lab Institute (MMLI) brings together a team of chemists, engineers, and AI‐experts from the University of Illinois Urbana‐Champaign (UIUC), Pennsylvania State University, and the Rochester Institute of Technology, with the goal of accelerating the discovery, synthesis and manufacture of complex organic molecules. Advanced AI and machine learning (ML) methods are deployed in four key thrusts: (1) AI‐enabled synthesis planning, (2) AI‐enabled catalyst development, (3) AI‐enabled molecule manufacturing, and (4) AI‐enabled molecule discovery. The MMLI's new AI‐enabled synthesis platform integrates chemical and enzymatic catalysis with literature mining and ML to predict the best way to make new molecules with desirable biological and material properties. The MMLI is transforming chemical synthesis and generating use‐inspired AI advances. Simultaneously, the MMLI is also acting as a training ground for the next generation of scientists with combined expertise in chemistry and AI. Outreach efforts aimed toward high school students and the public are being used to show how AI‐enabled tools can help to make chemical synthesis accessible to nonexperts. 
    more » « less
  4. Abstract Biaryl scaffolds are privileged templates used in the discovery and design of therapeutics with high affinity and specificity for a broad range of protein targets. Biaryls are found in the structures of therapeutics, including antibiotics, anti-inflammatory, analgesic, neurological and antihypertensive drugs. However, existing synthetic routes to biphenyls rely on traditional coupling approaches that require both arenes to be prefunctionalized with halides or pseudohalides with the desired regiochemistry. Therefore, the coupling of drug fragments may be challenging via conventional approaches. As an attractive alternative, directed C−H activation has the potential to be a versatile tool to form para -substituted biphenyl motifs selectively. However, existing C–H arylation protocols are not suitable for drug entities as they are hindered by catalyst deactivation by polar and delicate functionalities present alongside the instability of macrocyclic intermediates required for para -C−H activation. To address this challenge, we have developed a robust catalytic system that displays unique efficacy towards para -arylation of highly functionalized substrates such as drug entities, giving access to structurally diversified biaryl scaffolds. This diversification process provides access to an expanded chemical space for further exploration in drug discovery. Further, the applicability of the transformation is realized through the synthesis of drug molecules bearing a biphenyl fragment. Computational and experimental mechanistic studies further provide insight into the catalytic cycle operative in this versatile C−H arylation protocol. 
    more » « less
  5. null (Ed.)
    Ammonia holds great promise as a carbon-neutral liquid fuel for storing intermittent renewable energy sources and power generation due to its high energy density and hydrogen content. Photo-Electrochemical Ammonia Synthesis: Nanocatalyst Discovery, Reactor Design, and Advanced Spectroscopy covers the synthesis of novel hybrid plasmonic nanomaterials and their application in photo-electrochemical systems to convert low energy molecules to high value-added molecules and looks specifically at photo-electrochemical nitrogen reduction reaction (NRR) for ammonia synthesis as an attractive alternative to the long-lasting thermochemical process. - Provides an integrated scientific framework, combining materials chemistry, photo-electrochemistry, and spectroscopy to overcome the challenges associated with renewable energy storage and transport - Reviews materials chemistry for the synthesis of a range of heterogeneous (photo) electrocatalysts including plasmonic and hybrid plasmonic-semiconductor nanostructures for selective and efficient conversion of N2 to NH3 - Covers novel reactor design to study the redox processes in the photo-electrochemical energy conversion system and to benchmark nanocatalysts’ selectivity and activity toward NRR - Discusses the use of advanced spectroscopic techniques to probe the reaction mechanism for ammonia synthesis - Offers techno-economic analysis and presents performance targets for the scale-up and commercialization of electrochemical ammonia synthesis This book is of value to researchers, advanced students, and industry professionals working in sustainable energy storage and conversion across the disciplines of Chemical Engineering, Mechanical Engineering, Materials Science and Engineering, Environmental Engineering, and related areas. 
    more » « less