skip to main content

Title: Experiments and Molecular Simulations to Study the Role of Coadsorption of Oil in Corrosion Inhibitor Films in Improving Corrosion Mitigation
While both field experience and laboratory experiments have shown that the efficiency of adsorbed corrosion inhibitor films improves upon exposure of the aqueous solution to a hydrocarbon phase, a credible explanation of these results is lacking. Using a combination of experiments and molecular simulations, this study examines how exposure to oil molecules affects the nature of adsorbed corrosion inhibitor films on metal surfaces. It is found that oil molecules get coadsorbed in the corrosion inhibitor films, making them more hydrophobic, structurally more ordered, and well packed. Corrosion inhibitor molecules with a bulky polar head adsorb in nonplanar, cylinder-like morphologies. Coadsorption of oil molecules changes the morphology of these films to a planar self-assembled monolayer.
Authors:
; ; ; ;
Award ID(s):
1705817
Publication Date:
NSF-PAR ID:
10300679
Journal Name:
Corrosion
Volume:
76
Issue:
11
ISSN:
0010-9312
Sponsoring Org:
National Science Foundation
More Like this
  1. We have performed all-atom classical molecular dynamics simulations of aggregation and adsorption of different corrosion inhibitor molecules on metal surfaces. We report free energies of aggregation and adsorption of imidazolinium-type (henceforth referred to as imid) and quaternary ammonium-type (referred to as quat) corrosion inhibitors of different alkyl tail lengths. Corrosion inhibitor molecules show a strong tendency to adsorb onto metal surfaces in the unaggregated state. Inhibitor micelles, on the other hand, experience a free energy barrier to adsorption. The quat micelles are found to be thermodynamically stable in the adsorbed state whereas the imid micelles are only metastable in themore »adsorbed state. Quat micelles deform and partially disintegrate upon adsorption, which renders stability, while the imid micelles do not deform. The inhibitor molecules demonstrate a strong tendency to aggregate into micelles in the aqueous phase. The micellization free energy is found to be ~68 kBT for a micelle comprising of 18 molecules of imid molecules.« less
  2. Application of inhibitors is an established and cost-effective method to mitigate internal corrosion of mild steel pipelines in the oil and gas industry. Conventionally, surfactant-type organic inhibitors are frequently applied based on their critical micelle concentration (CMC) values and their adsorption to mild steel evaluated based on laboratory tests that show a reduction in corrosion rate. In this work, the relationship between reduction in corrosion rate, CMC and inhibitor surface saturation concentration on mild steel was studied using model quaternary ammonium inhibitors with different alkyl tail lengths. The quaternary ammonium model compounds were synthesized in-house and characterized by 1H-NMR beforemore »their use. Their CMCs were determined using surface tension measurements. Results showed that, although the CMC value and surface saturation concentration were the same for two of the inhibitors tested, there was no relationship observed between measured CMC values, surface saturation concentrations, and the calculated corrosion efficiencies for the five model inhibitor compounds tested. Consequently, using CMC values as a measurement for injection of inhibitors might not be considered as a reliable factor.« less
  3. Sulfate-reducing bacteria (SRB) have a unique ability to respire under anaerobic conditions using sulfate as a terminal electron acceptor, reducing it to hydrogen sulfide. SRB thrives in many natural environments (freshwater sediments and salty marshes), deep subsurface environments (oil wells and hydrothermal vents), and processing facilities in an industrial setting. Owing to their ability to alter the physicochemical properties of underlying metals, SRB can induce fouling, corrosion, and pipeline clogging challenges. Indigenous SRB causes oil souring and associated product loss and, subsequently, the abandonment of impacted oil wells. The sessile cells in biofilms are 1,000 times more resistant to biocidesmore »and induce 100-fold greater corrosion than their planktonic counterparts. To effectively combat the challenges posed by SRB, it is essential to understand their molecular mechanisms of biofilm formation and corrosion. Here, we examine the critical genes involved in biofilm formation and microbiologically influenced corrosion and categorize them into various functional categories. The current effort also discusses chemical and biological methods for controlling the SRB biofilms. Finally, we highlight the importance of surface engineering approaches for controlling biofilm formation on underlying metal surfaces.« less
  4. Protein adsorption on surfaces greatly impacts many applications such as biomedical materials, anti-biofouling coatings, bio-separation membranes, biosensors, antibody protein drugs etc. For example, protein drug adsorption on the widely used lubricant silicone oil surface may induce protein aggregation and thus affect the protein drug efficacy. It is therefore important to investigate the molecular behavior of proteins at the silicone oil/solution interface. Such an interfacial study is challenging because the targeted interface is buried. By using sum frequency generation vibrational spectroscopy (SFG) with Hamiltonian local mode approximation method analysis, we studied protein adsorption at the silicone oil/protein solution interface in situmore »in real time, using bovine serum albumin (BSA) as a model. The results showed that the interface was mainly covered by BSA dimers. The deduced BSA dimer orientation on the silicone oil surface from the SFG study can be explained by the surface distribution of certain amino acids. To confirm the BSA dimer adsorption, we treated adsorbed BSA dimer molecules with dithiothreitol (DTT) to dissociate these dimers. SFG studies on adsorbed BSA after the DTT treatment indicated that the silicone oil surface is covered by BSA dimers and BSA monomers in an approximate 6 : 4 ratio. That is to say, about 25% of the adsorbed BSA dimers were converted to monomers after the DTT treatment. Extensive research has been reported in the literature to determine adsorbed protein dimer formation using ex situ experiments, e.g. , by washing off the adsorbed proteins from the surface then analyzing the washed-off proteins, which may induce substantial errors in the washing process. Dimerization is a crucial initial step for protein aggregation. This research developed a new methodology to investigate protein aggregation at a solid/liquid (or liquid/liquid) interface in situ in real time using BSA dimer as an example, which will greatly impact many research fields and applications involving interfacial biological molecules.« less
  5. Friction surfacing technique is a thermo-mechanical approach for metallic deposition, suitable for a broad range of materials and applications. Friction surfacing can be employed for various industrial purposes such as coating, welding, repairing defective parts, surface hardening, and improving corrosion performance. In this technique, frictional heat generated at the interface of the consumable tool and substrate results in a severe plastic deformation at the end of the rod, enabling the deposition of a consumable material on the substrate surface. In this investigation, a novel method in friction surfacing, lateral friction surfacing, is employed to deposit the aluminum coatings. In thismore »novel approach, the side of the consumable tool is pressed against the surface of the substrate, and the material transfer happens from the lateral surface of the tool. This technique provides extremely thin and smooth deposits, which are more consistent compared to the conventional approach of friction surfacing. Moreover, this technique enables fabricating of deposits in lower temperatures, lessening the thermal impacts on the microstructures and mechanical properties of the deposits. In this investigation plates of 1018 mild steel were partially coated with various aluminum alloys and corroded in an accelerated corrosion test chamber. The corrosion performance of the partially coated sample was evaluated by mass loss measurement. It was found that AA5086 offered the most corrosion protection. After 13 cycles of GM9540P test, equivalent to approximately 3½ years exposure at a mild/moderate marine site in Hawaii, almost all of the deposited aluminum was consumed.« less