skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Numerical modeling of scour around porous hydraulic structures: an evaluation of the porosity model
Porous hydraulic structures, such as Large Woody Debris (LWD) and Engineered Log Jams (ELJs), play a very important role in erosion control and habitation conservation in rivers. Previous experimental research has shed some light on the flow and sediment dynamics through and around porous structures. It was found that the scour process is strongly dependent on porosity. Computational models have great value in revealing more details of the processes which are difficult to capture in laboratory experiments. For example, previous computational modeling work has shown that the level of resolution of the complex hydraulic structures in computer models has great effect on the simulated flow dynamics. The less computationally expensive porosity model, instead of resolving all geometric details, can capture the bulk behavior for the flow field, especially in the far field. In the near field where sediment transport is most intensive, the flow result is inaccurate. The way in which this error is translated to the sediment transport results is unknown. This work aims to answer this question. More specifically, the suitability and limitations of using a porosity model in simulating scour around porous hydraulic structures are investigated. To capture the evolution of the sediment bed, an immersed boundary method is implemented. The computational results are compared against flume experiments to evaluate the performance of the porosity model.  more » « less
Award ID(s):
1935243
PAR ID:
10300701
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 10th International Conference on Scour and Erosion (ICSE-10)
Page Range / eLocation ID:
784-791
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Wave-induced scour plays a key role in the stability analysis of coastal structures, submarine pipelines or cables. There is a rich literature in current-induced scour, but more research is needed to understand the characteristics of wave-induced scour and the mechanisms that are important to the scour process. Sediment transport and flow-induced scour are three-phase (air-water-sediment) flow problems in nature and multi-phase flow simulation is a useful tools that can provide information difficult to obtain from physical tests. Most existing numerical models developed for simulating local scours are based on one-way coupling, which neglects effects of sediment phase on hydrodynamics of the flow. The present study uses a three-phase (air, water and sediment) flow model, which allows for a two-way coupling, to simulate wave-induced local scour problems. The three-phase flow model captures the air-water interface using a modified VOF method, and uses an improved rheology for the sediment phase for better results. The model is validated and verified using one set of existing experiment results for local scour around a submerged horizontal pipe. The detailed flow fields of both the sediment phase and the water phase around the scour are analyzed to understand the scour process. All three-phase flow simulations flow simulations on XSEDE’s Stampede2 supercomputers. The applicability of the model to other local scour problems is also discussed. 
    more » « less
  2. Abstract Fractured sedimentary bedrock aquifers represent complex flow systems that may contain fast, fracture‐dominated flow paths and slower, porous media‐dominated flow paths. Thus, characterizing the dynamics of flow and transport through these aquifers remains a fundamental hydrogeologic challenge. Recent studies have demonstrated the utility of a novel hydraulic testing approach, oscillatory flow testing, in field settings to characterize single bedrock fractures embedded in low‐porosity sedimentary bedrock. These studies employed an idealized analytical model assuming Darcian flow through a nondeforming, constant‐aperture, nonleaky fracture for data interpretation, and reported period‐dependent effective fracture flow parameters. Here, we present the application of oscillatory flow testing across a range of frequencies and inter‐well spacings on a fracture embedded in poorly cemented sedimentary bedrock with considerable primary porosity at the Field Site for Research in Fractured Sedimentary Rock. Consistent with previous studies, we show an apparent period‐dependence in returned flow parameters, with hydraulic diffusivity decreasing and storativity increasing with increasing oscillation period, when assuming an idealized fracture conceptual model. We present simple analyses that examine non‐Darcian flow and borehole storage effects as potential test design artifacts and a simple analytical model that examines fluid leakage to the surrounding host rock as a potential hydraulic mechanism that might contribute to the period‐dependent flow parameters. These analyses represent a range of conceptual assumptions about fracture behavior during hydraulic testing, none of which account for the measured responses during oscillatory flow testing, leading us to argue that other hydraulic processes (e.g., aperture heterogeneity and/or fracture hydromechanics) are necessary to accurately represent pressure propagation through fractured sedimentary bedrock. 
    more » « less
  3. null (Ed.)
    Abstract Mangrove swamps are extremely productive ecosystems providing many ecological services in coastal regions. The hydrodynamic interactions of mangrove roots and water flow have been proposed as a key element to mitigate erosion. Several studies reveal that precise prediction of the morphological evolution of coastal areas, in the face of global warming and the consequent sea-level rise, requires an understanding of interactions between root porosity (the fraction of the volume of void space over the total volume), water flows, and sediment transport. Water flows around the mangrove prop roots create a complex energetic process that mixes up sediments and generates a depositional region posterior to the roots. In this work, we investigated the boundary layer behind permeable arrays of cylinders (patch) that represent the mangrove roots to explore the impact of patch porosity on the onset of sediment transport. The flow measurements were performed in a vertical plane along the water depth downstream of the mangrove root models. A high-resolution Particle Image Velocimetry (PIV) was used in a flume to observe the impact of porosity on the mean flow, velocity derivatives, skin friction coefficient, and production of turbulent kinetic energy for Reynolds number of 2500 (based on patch diameter length-scale). Here, we proposed a predictive model for critical velocity for incipient motion that takes into account the mangrove roots porosity and the near-bed turbulence effect. It is found that the patch with the $$\phi =47\%$$ ϕ = 47 % porosity, has the maximum critical velocity over which the sediment transport initiates. We found the optimum porosity has the minimum sediment erosion and creates negative vorticity sources near the bed that increases the critical velocity. This signifies an optimum porosity for the onset of sediment transport consistent with the porosity of mangroves in nature. The phenomenological model is elucidated based on an analysis of the vorticity evolution equation for viscous incompressible flows. For the optimum porous patch, a sink of vorticity was formed which yielded to lower the near-bed turbulence and vorticity. The minimum velocity fluctuations were sufficient to initiate the boundary layer transition, however, the viscous dissipation dominated the turbulence production to obstruct the sediment transport. This work identified the pivotal role of mangrove root porosity in sediment transport in terms of velocity and its derivatives in wall-bounded flows. Our work also provides insight into the sediment transport and erosion processes that govern the evolution of the shapes of shorelines. 
    more » « less
  4. Abstract. In this paper, a three-dimensional two-phase flow solver, SedFoam-2.0, is presented for sediment transport applications. The solver is extended from twoPhaseEulerFoam available in the 2.1.0 release of the open-source CFD (computational fluid dynamics) toolbox OpenFOAM. In this approach the sediment phase is modeled as a continuum, and constitutive laws have to be prescribed for the sediment stresses. In the proposed solver, two different intergranular stress models are implemented: the kinetic theory of granular flows and the dense granular flow rheology μ(I). For the fluid stress, laminar or turbulent flow regimes can be simulated and three different turbulence models are available for sediment transport: a simple mixing length model (one-dimensional configuration only), a k − ε, and a k − ω model. The numerical implementation is demonstrated on four test cases: sedimentation of suspended particles, laminar bed load, sheet flow, and scour at an apron. These test cases illustrate the capabilities of SedFoam-2.0 to deal with complex turbulent sediment transport problems with different combinations of intergranular stress and turbulence models. 
    more » « less
  5. A three-dimensional Eulerian two-phase flow solver, SedFoam, has been developed for various sediment transport applications. The solver has demonstrated success in modeling sheet flow and bedforms driven by oscillatory flows using a Reynolds-averaged Navier–Stokes (RANS) formulation. However, the accuracy of the RANS formulation for more complex flows, such as scour around structures, requires further evaluation. SedFoam has recently been enhanced to incorporate two-phase large-eddy simulation (LES) capability. In this study, RANS and LES approaches are tested via a three-dimensional case of wave-induced local scour around a single vertical circular pile. Two laboratory experiments, one with an erodible bed and the other with a rigid bed, were chosen for simulation, with both experiments having a Keulegan-Carpenter (KC) number of 10. The k-ω turbulence closure was selected for the RANS simulation, and the dynamic Lagrangian subgrid closure was chosen for the LES simulation. Numerical results reveal that both RANS and LES simulations can resolve lee-wake vortices, although the vortices are significantly weaker in the RANS simulation. In comparison with the LES results, the RANS approach fails to predict horseshoe vortex with sufficient intensity, leading to an underestimation of scour hole depth development. Although the scour depths develop at a very similar rate in the early stage, the scour depth predicted by the RANS simulation quickly reaches equilibrium, while the LES simulation follows the measured trend. These findings indicate that a turbulence-resolving methodology, i.e. LES, is necessary for accurate scour simulations. 
    more » « less