skip to main content

Title: Numerical modeling of scour around porous hydraulic structures: an evaluation of the porosity model
Porous hydraulic structures, such as Large Woody Debris (LWD) and Engineered Log Jams (ELJs), play a very important role in erosion control and habitation conservation in rivers. Previous experimental research has shed some light on the flow and sediment dynamics through and around porous structures. It was found that the scour process is strongly dependent on porosity. Computational models have great value in revealing more details of the processes which are difficult to capture in laboratory experiments. For example, previous computational modeling work has shown that the level of resolution of the complex hydraulic structures in computer models has great effect on the simulated flow dynamics. The less computationally expensive porosity model, instead of resolving all geometric details, can capture the bulk behavior for the flow field, especially in the far field. In the near field where sediment transport is most intensive, the flow result is inaccurate. The way in which this error is translated to the sediment transport results is unknown. This work aims to answer this question. More specifically, the suitability and limitations of using a porosity model in simulating scour around porous hydraulic structures are investigated. To capture the evolution of the sediment bed, an immersed boundary more » method is implemented. The computational results are compared against flume experiments to evaluate the performance of the porosity model. « less
; ;
Award ID(s):
Publication Date:
Journal Name:
Proceedings of the 10th International Conference on Scour and Erosion (ICSE-10)
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Wave-induced scour plays a key role in the stability analysis of coastal structures, submarine pipelines or cables. There is a rich literature in current-induced scour, but more research is needed to understand the characteristics of wave-induced scour and the mechanisms that are important to the scour process. Sediment transport and flow-induced scour are three-phase (air-water-sediment) flow problems in nature and multi-phase flow simulation is a useful tools that can provide information difficult to obtain from physical tests. Most existing numerical models developed for simulating local scours are based on one-way coupling, which neglects effects of sediment phase on hydrodynamics of the flow. The present study uses a three-phase (air, water and sediment) flow model, which allows for a two-way coupling, to simulate wave-induced local scour problems. The three-phase flow model captures the air-water interface using a modified VOF method, and uses an improved rheology for the sediment phase for better results. The model is validated and verified using one set of existing experiment results for local scour around a submerged horizontal pipe. The detailed flow fields of both the sediment phase and the water phase around the scour are analyzed to understand the scour process. All three-phase flow simulations flowmore »simulations on XSEDE’s Stampede2 supercomputers. The applicability of the model to other local scour problems is also discussed.« less
  2. Abstract Mangrove swamps are extremely productive ecosystems providing many ecological services in coastal regions. The hydrodynamic interactions of mangrove roots and water flow have been proposed as a key element to mitigate erosion. Several studies reveal that precise prediction of the morphological evolution of coastal areas, in the face of global warming and the consequent sea-level rise, requires an understanding of interactions between root porosity (the fraction of the volume of void space over the total volume), water flows, and sediment transport. Water flows around the mangrove prop roots create a complex energetic process that mixes up sediments and generates a depositional region posterior to the roots. In this work, we investigated the boundary layer behind permeable arrays of cylinders (patch) that represent the mangrove roots to explore the impact of patch porosity on the onset of sediment transport. The flow measurements were performed in a vertical plane along the water depth downstream of the mangrove root models. A high-resolution Particle Image Velocimetry (PIV) was used in a flume to observe the impact of porosity on the mean flow, velocity derivatives, skin friction coefficient, and production of turbulent kinetic energy for Reynolds number of 2500 (based on patch diameter length-scale).more »Here, we proposed a predictive model for critical velocity for incipient motion that takes into account the mangrove roots porosity and the near-bed turbulence effect. It is found that the patch with the $$\phi =47\%$$ ϕ = 47 % porosity, has the maximum critical velocity over which the sediment transport initiates. We found the optimum porosity has the minimum sediment erosion and creates negative vorticity sources near the bed that increases the critical velocity. This signifies an optimum porosity for the onset of sediment transport consistent with the porosity of mangroves in nature. The phenomenological model is elucidated based on an analysis of the vorticity evolution equation for viscous incompressible flows. For the optimum porous patch, a sink of vorticity was formed which yielded to lower the near-bed turbulence and vorticity. The minimum velocity fluctuations were sufficient to initiate the boundary layer transition, however, the viscous dissipation dominated the turbulence production to obstruct the sediment transport. This work identified the pivotal role of mangrove root porosity in sediment transport in terms of velocity and its derivatives in wall-bounded flows. Our work also provides insight into the sediment transport and erosion processes that govern the evolution of the shapes of shorelines.« less
  3. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>
  4. By virtue of their extensive potential in energy conversion and storage, catalysis, photocatalysis, adsorption, separation and life science applications, significant interest has been devoted to the design and synthesis of hierarchical porous materials. The main factors which determines the performance of hierarchical porous materials for an application include structure (pore size, porosity, tortuosity), materials (scaffold, dopants) and operating conditions. Traditionally, these hierarchical porous materials are synthesised and fabricated through a manual trial and error procedure, which is an expensive and time-consuming approach. However, there have been significant advances in mathematical, computational and engineering tools toward solving and optimising multiscale descriptions of physical phenomena. This motivates a computational-aided framework to tailor the fabrication of hierarchical porous materials to be optimised in performance for their specific application. In this work, a reactive-transport system in porous media is modelled using computational fluid dynamics. While microscale descriptions are too computationally expensive and macroscale models fail to accurately describe a physical phenomena in specific parts of computational domains, hybrid - or multiscale - algorithms, are used. Using the information provided by the numerical simulation, multiscale model-based design of experiments are developed to optimise the material’s performance on their particular usage. It is proposed that hierarchicalmore »multiscale modeling offers a systematic framework for identification of the important scales and parameters where one should focus experimental efforts on.« less
  5. Learning reservoir flow dynamics is of primary importance in creating robust predictive models for reservoir management including hydraulic fracturing processes. Physics-based models are to a certain extent exact, but they entail heavy computational infrastructure for simulating a wide variety of parameters and production scenarios. Reduced-order models offer computational advantages without compromising solution accuracy, especially if they can assimilate large volumes of production data without having to reconstruct the original model (data-driven models). Dynamic mode decomposition (DMD) entails the extraction of relevant spatial structure (modes) based on data (snapshots) that can be used to predict the behavior of reservoir fluid flow in porous media. In this paper, we will further enhance the application of the DMD, by introducing sparse DMD and local DMD. The former is particularly useful when there is a limited number of sparse measurements as in the case of reservoir simulation, and the latter can improve the accuracy of developed DMD models when the process dynamics show a moving boundary behavior like hydraulic fracturing. For demonstration purposes, we first show the methodology applied to (flow only) single- and two-phase reservoir models using the SPE10 benchmark. Both online and offline processes will be used for evaluation. We observe thatmore »we only require a few DMD modes, which are determined by the sparse DMD structure, to capture the behavior of the reservoir models. Then, we applied the local DMDc for creating a proxy for application in a hydraulic fracturing process. We also assessed the trade-offs between problem size and computational time for each reservoir model. The novelty of our method is the application of sparse DMD and local DMDc, which is a data-driven technique for fast and accurate simulations.« less