skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Characterising the atomic structure of mono-metallic nanoparticles from x-ray scattering data using conditional generative models
The development of new nanomaterials for energy technologies is dependent on understanding the intricate relation between material properties and atomic structure. It is, therefore, crucial to be able to routinely characterise the atomic structure in nanomaterials, and a promising method for this task is Pair Distribution Function (PDF) analysis. The PDF can be obtained through Fourier transformation of x-ray total scattering data, and represents a histogram of all interatomic distances in the sample. Going from the distance information in the PDF to a chemical structure is an unassigned distance geometry problem (uDGP), and solving this is often the bottleneck in nanostructure analysis. In this work, we propose to use a Conditional Variational Autoencoder (CVAE) to automatically solve the uDGP to obtain valid chemical structures from PDFs. We use a simple model system of hypothetical mono-metallic nanoparticles containing up to 100 atoms in the face centered cubic (FCC) structure as a proof of concept. The model is trained to predict the assigned distance matrix (aDM) from a simulated PDF of the structure as the conditional input. We introduce a novel representation of structures by projecting them inside a unit sphere and adding additional anchor points or satellites to help in the reconstruction of the chemical structure. The performance of the CVAE model is compared to a Deterministic Autoencoder (DAE) showing that both models are able to solve the uDGP reasonably well. We further show that the CVAE learns a structured and meaningful latent embedding space which can be used to predict new chemical structures.  more » « less
Award ID(s):
1922234
PAR ID:
10300745
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ChemRxiv
ISSN:
2573-2293
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a deep learning algorithm, DeepStruc, that can solve a simple nanoparticle structure directly from an experimental Pair Distribution Function (PDF) by using a conditional variational autoencoder. 
    more » « less
  2. ABSTRACT The discovery of novel thermoset shape memory polymers (TSMPs) for additive manufacturing can be accelerated through the use of a deep‐generative algorithm, minimizing the need for laborious traditional laboratory experiments. This study is the first to introduce an innovative approach that uses a deep generative learning model, namely the conditional variational autoencoder (CVAE), to discover novel TSMPs with lower glass transition temperature () and high recovery stress values (). In this study, specific chemical groups, such as epoxy, amine, thiol, and vinyl, are integrated as constraints to generate novel TSMPs while preserving the essential reaction properties. To address the challenges posed by a small dataset, the CVAE model is used with graph‐extracted features. Unlike previous studies focused on single‐polymer systems, this research extends to two‐monomer samples, discovering 22 novel TSMPs. This approach has practical implications in additive manufacturing, biomedical devices, aerospace, and robotics for the discovery of novel samples from limited data. 
    more » « less
  3. Artificial intelligence (AI) has the ability to predict rheological properties and constituent composition of 3D-printed materials with appropriately trained models. However, these models are not currently available for use. In this work, we trained deep learning (DL) models to (1) predict the rheological properties, such as the storage (G’) and loss (G”) moduli, of 3D-printed polyacrylamide (PAA) substrates, and (2) predict the composition of materials and associated 3D printing parameters for a desired pair of G’ and G”. We employed a multilayer perceptron (MLP) and successfully predicted G’ and G” from seven gel constituent parameters in a multivariate regression process. We used a grid-search algorithm along with 10-fold cross validation to tune the hyperparameters of the MLP, and found the R2 value to be 0.89. Next, we adopted two generative DL models named variational autoencoder (VAE) and conditional variational autoencoder (CVAE) to learn data patterns and generate constituent compositions. With these generative models, we produced synthetic data with the same statistical distribution as the real data of actual hydrogel fabrication, which was then validated using Student’s t-test and an autoencoder (AE) anomaly detector. We found that none of the seven generated gel constituents were significantly different from the real data. Our trained DL models were successful in mapping the input–output relationship for the 3D-printed hydrogel substrates, which can predict multiple variables from a handful of input variables and vice versa. 
    more » « less
  4. Predicting the behavior of nanomaterials under various conditions presents a significant challenge due to their complex microstructures. While high-fidelity modeling techniques, such as molecular dynamics (MD) simulations, are effective, they are also computationally demanding. Machine learning (ML) models have opened new avenues for the rapid exploration of design spaces. In this work, we developed a deep learning framework based on a conditional generative adversarial network (cGAN) to predict the evolution of grain boundary (GB) networks in nanocrystalline materials under mechanical loads, incorporating both morphological and atomic details. We conducted MD simulations on nanocrystalline tungsten and used the resulting ground-truth data to train our cGAN model. We assessed the performance of our cGAN model by comparing it to a Convolutional Autoencoder (ConvAE) model and examining the impact of changes in geometric morphology and loading conditions on the model's performance. Our cGAN model demonstrated high accuracy in predicting GB network evolution under a variety of conditions. This developed framework shows potential for predicting various materials' behaviors across a wide range of nanomaterials. 
    more » « less
  5. Discovering novel molecules with targeted properties remains a formidable challenge in materials science, often likened to finding a needle in a haystack. Traditional experimental approaches are slow, costly, and inefficient. In this study, we present an inverse design framework based on a molecular graph conditional variational autoencoder (CVAE) that enables the generation of new molecules with user-specified optical properties, particularly molar extinction coefficient ($$\varepsilon$$). Our model encodes molecular graphs, derived from SMILES strings, into a structured latent space, and then decodes them into valid molecular structures conditioned on a target $$\varepsilon$$ value. Trained on a curated dataset of known molecules with corresponding extinction coefficients, the CVAE learns to generate chemically valid structures, as verified by RDKit. Subsequent Density Functional Theory (DFT) simulations confirm that many of the generated molecules exhibit the electronic structures similar to those molecules with desired $$\varepsilon$$ values. We have also verified the $$\varepsilon$$ values of the generated molecules using a graph neural network (GNN) and the synthesizability of those molecules using an open-source module named ASKCOS. This approach demonstrates the potential of CVAEs to accelerate molecular discovery by enabling user-guided, property-driven molecule generation -- offering a scalable, data-driven alternative to traditional trial-and-error synthesis. 
    more » « less