Surface-enhanced Raman spectroscopy (SERS) has great potential as an analytical technique for environmental analyses. In this study, we fabricated highly porous gold (Au) supraparticles ( i.e. , ∼100 μm diameter agglomerates of primary nano-sized particles) and evaluated their applicability as SERS substrates for the sensitive detection of environmental contaminants. Facile supraparticle fabrication was achieved by evaporating a droplet containing an Au and polystyrene (PS) nanoparticle mixture on a superamphiphobic nanofilament substrate. Porous Au supraparticles were obtained through the removal of the PS phase by calcination at 500 °C. The porosity of the Au supraparticles was readily adjusted by varying the volumetric ratios of Au and PS nanoparticles. Six environmental contaminants (malachite green isothiocyanate, rhodamine B, benzenethiol, atrazine, adenine, and gene segment) were successfully adsorbed to the porous Au supraparticles, and their distinct SERS spectra were obtained. The observed linear dependence of the characteristic Raman peak intensity for each environmental contaminant on its aqueous concentration reveals the quantitative SERS detection capability by porous Au supraparticles. The limit of detection (LOD) for the six environmental contaminants ranged from ∼10 nM to ∼10 μM, which depends on analyte affinity to the porous Au supraparticles and analyte intrinsic Raman cross-sections. The porous Au supraparticles enabled multiplex SERS detection and maintained comparable SERS detection sensitivity in wastewater influent. Overall, we envision that the Au supraparticles can potentially serve as practical and sensitive SERS devices for environmental analysis applications.
more »
« less
Capture of Phenylalanine and Phenylalanine-Terminated Peptides Using a Supramolecular Macrocycle for Surface-Enhanced Raman Scattering Detection
The cucurbit[n]uril (CB[ n]) family of macrocycles are known to bind a variety of small molecules with high affinity. These motifs thus have promise in an ever-growing list of trace detection methods. Surface-enhanced Raman scattering (SERS) detection schemes employing CB[ n] motifs exhibit increased sensitivity due to selective concentration of the analyte at the nanoparticle surface, coupled with the ability of CB[ n] to facilitate the formation of well-defined electromagnetic hot spots. Herein, we report a CB[7] SERS assay for quantification of phenylalanine (Phe) and further demonstrate its utility for detecting peptides with an N-terminal Phe. The CB[7]–guest interaction improves the sensitivity 5–25-fold over direct detection of Phe using citrate-capped silver nanoparticle aggregates, enabling use of a portable Raman system. We further illustrate detection of insulin via binding of CB[7] to the N-terminal Phe residue on its B-chain, suggesting a general strategy for detecting Phe-terminated peptides of clinically relevant biomolecules.
more »
« less
- Award ID(s):
- 1709566
- PAR ID:
- 10300923
- Date Published:
- Journal Name:
- Applied Spectroscopy
- Volume:
- 74
- Issue:
- 11
- ISSN:
- 0003-7028
- Page Range / eLocation ID:
- 1374 to 1383
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Imaging of surface-enhanced Raman scattering (SERS) nanoparticles (NPs) has been intensively studied for cancer detection due to its high sensitivity, unconstrained low signal-to-noise ratios, and multiplexing detection capability. Furthermore, conjugating SERS NPs with various biomarkers is straightforward, resulting in numerous successful studies on cancer detection and diagnosis. However, Raman spectroscopy only provides spectral data from an imaging area without co-registered anatomic context. This is not practical and suitable for clinical applications. Here, we propose a custom-made Raman spectrometer with computer-vision-based positional tracking and monocular depth estimation using deep learning (DL) for the visualization of 2D and 3D SERS NPs imaging, respectively. In addition, the SERS NPs used in this study (hyaluronic acid-conjugated SERS NPs) showed clear tumor targeting capabilities (target CD44 typically overexpressed in tumors) by anex vivoexperiment and immunohistochemistry. The combination of Raman spectroscopy, image processing, and SERS molecular imaging, therefore, offers a robust and feasible potential for clinical applications.more » « less
-
Surface enhanced resonance Raman (SERS) is a powerful optical technique, which can help enhance the sensitivity of Raman spectroscopy aided by noble metal nanoparticles (NPs). However, current SERS‐NPs are often suboptimal, which can aggregate under physiological conditions with much reduced SERS enhancement. Herein, a robust one‐pot method has been developed to synthesize SERS‐NPs with more uniform core diameters of 50 nm, which is applicable to both non‐resonant and resonant Raman dyes. The resulting SERS‐NPs are colloidally stable and bright, enabling NP detection with low‐femtomolar sensitivity. An algorithm has been established, which can accurately unmix multiple types of SERS‐NPs enabling potential multiplex detection. Furthermore, a new liposome‐based approach has been developed to install a targeting carbohydrate ligand, i.e., hyaluronan, onto the SERS‐NPs bestowing significantly enhanced binding affinity to its biological receptor CD44 overexpressed on tumor cell surface. The liposomal hyaluronan (HA)‐SERS‐NPs enabled visualization of spontaneously developed breast cancer in mice in real time guiding complete surgical removal of the tumor, highlighting the translational potential of these new glyco‐SERS‐NPs.more » « less
-
Gannot, Israel; Roodenko, Katy (Ed.)This study validates a fiber optics-based Surface Enhanced Raman Spectroscopy (SERS) sensor for detecting Salmonella in raw turkey samples. The sensor uses nanoantenna arrays on a side-polished optical fiber core with a fixed periodicity of 0.77 µm to maximize the SERS signal intensity. A 3D-printed chamber and microstructure optimize light reflection, improving sensitivity. The sensor detects Salmonella at 0.4-0.5 CFU/ml in 10 minutes, offering cost-effective, portable pathogen detection.more » « less
-
Single-entity electrochemistry is of fundamental importance and shows promise for ultrasensitive biosensing applications. Recently, we have demonstrated that various charged nanoparticles can be detected individually based on the non-redox open-circuit potential (OCP) changes induced by their collision events on a floating carbon nanoelectrode (CNE). Unlike the widely used amperometry approach, the potentiometric method provides the label-free detection of individual nanoscale entities without redox mediators in the solution. However, the CNE lacks specificity for molecular recognition during the collision events because of the limited methods of surface functionalization for carbon surfaces. Herein, we used surface-functionalized gold nanoelectrode (GNE) to overcome this limitation of CNE. The GNE modified with Raman reporter molecule also enabled surface-enhanced Raman spectroscopy (SERS) measurements. By using simultaneous time-resolved OCP and SERS measurements, both the OCP and SERS signals induced by the “hit-n-run” type of gold nanoparticle (GNP) collision events can be better understood. Also, by introducing a zwitterionic molecule, we formed near “stealth” surface and demonstrated that the non-specific adsorptions of GNPs to the surface of GNE have been suppressed, allowing continuous detection of hit-n-run events for over 30 min.more » « less
An official website of the United States government

