skip to main content

Title: Applying a novel systems approach to address systemic environmental injustices
The knowledge of unsustainable human and Earth system interactions is widespread, especially in light of systemic environmental injustices. Systems science has enabled complex and rigorous understandings of human and Earth system dynamics, particularly relating to pollution of Earth’s land, water, air, and organisms. Given that many of these systems are not functioning sustainably or optimally, how might this field enable both rigorous understanding of the issues and experiments aimed at alternative outcomes? Here, we put forth a novel, multiscale systems science approach with three steps: (1) understanding the systemic issues at hand, (2) identifying systemic interventions, and (3) applying experiments to study the efficacy of such interventions. We illustrate this framework through the ubiquitous and yet frequently underrecognized issue of soil lead (Pb). First, we describe the systemic interactions of humans and soil Pb at micro-, meso-, and macroscales in time and space. We then discuss interventions for mitigating soil Pb exposure at each scale. Finally, we provide examples of applied and participatory experiments to mitigate exposure at different scales currently being conducted in New York City, NY, USA. We put forth this framework to be flexibly applied to contamination issues in other regions and to other pressing environmental issues of our time.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Elementa: Science of the Anthropocene
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The field of sustainability science has grown significantly over the past two decades in terms of both conceptual development and empirical research. Systems-focused analysis is critical to building generalizable knowledge in the field, yet much relevant research does not take a systems view. Systems-oriented analytical frameworks can help researchers conceptualize and analyze sustainability-relevant systems, but existing frameworks may lack access or utility outside a particular research tradition. In this article, we outline the human–technical–environmental (HTE) framework, which provides analysts from different disciplinary backgrounds and fields of study a common way to advance systems-focused research on sustainability issues. We detail a step-by-step guide for the application of the HTE framework through a matrix-based approach for identifying system components, studying interactions among system components, and examining interventions targeting components and/or their interactions for the purpose of advancing sustainability. We demonstrate the applicability of the HTE framework and the matrix-based approach through an analysis of an empirical case of coal-fired power plants and mercury pollution, which is relevant to large-scale sustainability transitions. Based on this analysis, we identify specific insights related to the applicability of upstream and downstream leverage points, connections between energy markets and the use of pollution control technologies, and the importance of institutions fitting both biophysical dynamics and socioeconomic and political dynamics. Further application of the HTE framework and the identification of insights can help develop systems-oriented analysis, and inform societal efforts to advance sustainability, as well as contribute to the formulation of empirically grounded middle-range theories related to sustainability systems and sustainability transitions. We conclude with a discussion of areas for further development and application of the HTE framework.

    more » « less
  2. Abstract

    Nutrients, such as nitrogen and phosphorus, provide vital support for human life, but overloading nutrients to the Earth system leads to environmental concerns, such as water and air pollution on local scales and climate change on the global scale. With an urgent need to feed the world's growing population and the growing concern over nutrient pollution and climate change, sustainable nutrient management has become a major challenge for this century. To address this challenge, the growing body of research on nutrient budgets, namely the nutrient inputs and outputs of a given system, has provided great opportunities for improving scientific knowledge of the complex nutrient cycles in the coupled human and natural systems. This knowledge can help inform stakeholders, such as farmers, consumers, and policy makers, on their decisions related to nutrient management. This paper systematically reviews major challenges, as well as opportunities, in defining, quantifying, and applying nutrient budgets. Nutrient budgets have been defined for various systems with different research or application purposes, but the lack of consistency in the system definition and its budget terms has hindered intercomparison among studies and experience‐sharing among researchers and regions. Our review synthesizes existing nutrient budgets under a framework with five systems (i.e.,Soil‐Plantsystem,Animalsystem,Animal‐Plant‐Soilsystem,Agro‐Foodsystem, andLandscapesystem) and four spatial scales (i.e., Plot and Farm, Watershed, National, and Global scales). We define these systems and identify issues of nitrogen and phosphorus budgets within each. Few nutrient budgets have been well balanced at any scale, due to the large uncertainties in the quantification of several major budget terms. The type and level of challenges vary across spatial scales and also differ among nutrients. Improvement in nutrient budgets will rely not only on the technological advancement of scientific observations and models but also on better bookkeeping of human activity data. While some nutrient budget terms may need decades, or even centuries, of research to be well quantified within desirable levels of uncertainties, it is imperative to effectively communicate to interested stakeholders our understanding of nutrient budgets so that scientists and a variety of stakeholders can work together to address the sustainable nutrient management challenge of this century.

    more » « less
  3. Abstract

    Headwater catchments are the fundamental units that connect the land to the ocean. Hydrological flow and biogeochemical processes are intricately coupled, yet their respective sciences have progressed without much integration. Reaction kinetic theories that prescribe rate dependence on environmental variables (e.g., temperature and water content) have advanced substantially, mostly in well‐mixed reactors, columns, and warming experiments without considering the characteristics of hydrological flow at the catchment scale. These theories have shown significant divergence from observations in natural systems. On the other hand, hydrological theories, including transit time theory, have progressed substantially yet have not been incorporated into understanding reactions at the catchment scale. Here we advocate for the development of integrated hydro‐biogeochemical theories across gradients of climate, vegetation, and geology conditions. The lack of such theories presents barriers for understanding mechanisms and forecasting the future of the Critical Zone under human‐ and climate‐induced perturbations. Although integration has started and co‐located measurements are well under way, tremendous challenges remain. In particular, even in this era of “big data,” we are still limited by data and will need to (1) intensify measurements beyond river channels and characterize the vertical connectivity and broadly the shallow and deep subsurface; (2) expand to older water dating beyond the time scales reflected in stable water isotopes; (3) combine the use of reactive solutes, nonreactive tracers, and isotopes; and (4) augment measurements in environments that are undergoing rapid changes. To develop integrated theories, it is essential to (1) engage models at all stages to develop model‐informed data collection strategies and to maximize data usage; (2) adopt a “simple but not simplistic,” or fit‐for‐purpose approach to include essential processes in process‐based models; (3) blend the use of process‐based and data‐driven models in the framework of “theory‐guided data science.” Within the framework of hypothesis testing, model‐data fusion can advance integrated theories that mechanistically link catchments' internal structures and external drivers to their functioning. It can not only advance the field of hydro‐biogeochemistry, but also enable hind‐ and fore‐casting and serve the society at large. Broadly, future education will need to cultivate thinkers at the intersections of traditional disciplines with hollistic approaches for understanding interacting processes in complex earth systems.

    This article is categorized under:

    Engineering Water > Methods

    more » « less
  4. Humans live in complex socio-ecological systems where we interact with parasites and pathogens that spend time in abiotic and biotic environmental reservoirs (e.g., water, air, soil, other vertebrate hosts, vectors, intermediate hosts). Through a synthesis of published literature, we reviewed the life cycles and environmental persistence of 150 parasites and pathogens tracked by the World Health Organization's Global Burden of Disease study. We used those data to derive the time spent in each component of a pathogen's life cycle, including total time spent in humans versus all environmental stages. We found that nearly all infectious organisms were “environmentally mediated” to some degree, meaning that they spend time in reservoirs and can be transmitted from those reservoirs to human hosts. Correspondingly, many infectious diseases were primarily controlled through environmental interventions (e.g., vector control, water sanitation), whereas few (14%) were primarily controlled by integrated methods (i.e., combining medical and environmental interventions). Data on critical life history attributes for most of the 150 parasites and pathogens were difficult to find and often uncertain, potentially hampering efforts to predict disease dynamics and model interactions between life cycle time scales and infection control strategies. We hope that this synthetic review and associated database serve as a resource for understanding both common patterns among parasites and pathogens and important variability and uncertainty regarding particular infectious diseases. These insights can be used to improve systems-based approaches for controlling environmentally mediated diseases of humans in an era where the environment is rapidly changing. 
    more » « less
  5. Lau, Eric HY (Ed.)
    Randomized controlled trials (RCTs) evaluate hypotheses in specific contexts and are often considered the gold standard of evidence for infectious disease interventions, but their results cannot immediately generalize to other contexts (e.g., different populations, interventions, or disease burdens). Mechanistic models are one approach to generalizing findings between contexts, but infectious disease transmission models (IDTMs) are not immediately suited for analyzing RCTs, since they often rely on time-series surveillance data. We developed an IDTM framework to explain relative risk outcomes of an infectious disease RCT and applied it to a water, sanitation, and hygiene (WASH) RCT. This model can generalize the RCT results to other contexts and conditions. We developed this compartmental IDTM framework to account for key WASH RCT factors: i) transmission across multiple environmental pathways, ii) multiple interventions applied individually and in combination, iii) adherence to interventions or preexisting conditions, and iv) the impact of individuals not enrolled in the study. We employed a hybrid sampling and estimation framework to obtain posterior estimates of mechanistic parameter sets consistent with empirical outcomes. We illustrated our model using WASH Benefits Bangladesh RCT data (n = 17,187). Our model reproduced reported diarrheal prevalence in this RCT. The baseline estimate of the basic reproduction number R 0 for the control arm (1.10, 95% CrI: 1.07, 1.16) corresponded to an endemic prevalence of 9.5% (95% CrI: 7.4, 13.7%) in the absence of interventions or preexisting WASH conditions. No single pathway was likely able to sustain transmission: pathway-specific R 0 s for water, fomites, and all other pathways were 0.42 (95% CrI: 0.03, 0.97), 0.20 (95% CrI: 0.02, 0.59), and 0.48 (95% CrI: 0.02, 0.94), respectively. An IDTM approach to evaluating RCTs can complement RCT analysis by providing a rigorous framework for generating data-driven hypotheses that explain trial findings, particularly unexpected null results, opening up existing data to deeper epidemiological understanding. 
    more » « less