skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep Reinforcement Learning for Secure MEC Service in Vehicular Networks with Reconfigurable Intelligent Surfaces
The broadcasting nature of wireless signals may result in the task offloading process of mobile edge computing (MEC) suffering serious information leakage. As a novel technology, physical layer security (PLS) combined with reconfigurable intelligent surfaces (RIS) can enhance transmission quality and security. This paper investigates the MEC service delay problem in RIS-aided vehicular networks under malicious eavesdropping. Due to the lack of an explicit formulation for the optimization problem, we propose a deep deterministic policy gradient (DDPG)-based communication scheme to optimize the secure MEC service. It aims to minimize the maximum MEC service time while reducing eavesdropping threats by jointly designing the RIS phase shift matrix and computing resource allocation in real-time. Simulation results demonstrate that 1) the DDPG-based scheme can help the base station make reasonable actions to realize secure MEC service in dynamic MEC vehicular networks; 2) deploying RIS can dramatically reduce eavesdropping threats and improve the overall MEC service quality.  more » « less
Award ID(s):
2107182 2030029
PAR ID:
10517894
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
Proc. 57th Asilomar Conference on Signals, Systems, and Computers
ISBN:
979-8-3503-2574-4
Page Range / eLocation ID:
1184 to 1188
Format(s):
Medium: X
Location:
Pacific Grove, CA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Security is a huge challenge in vehicular networks due to the large size of the network, high mobility of nodes, and continuous change of network topology. These challenges are also applicable to the vehicular fog, which is a new computing paradigm in the context of vehicular networks. In vehicular fog computing, the vehicles serve as fog nodes. This is a promising model for latency-sensitive and location-aware services, which also incurs some unique security and privacy issues. However, there is a lack of a systematic approach to design security solutions of the vehicular fog using a comprehensive threat model. Threat modeling is a step-by-step process to analyze, identify, and prioritize all the potential threats and vulnerabilities of a system and solve them with known security solutions. A well-designed threat model can help to understand the security and privacy threats, vulnerabilities, requirements, and challenges along with the attacker model, the attack motives, and attacker capabilities. Threat model analysis in vehicular fog computing is critical because only brainstorming and threat models of other vehicular network paradigms will not provide a complete scenario of potential threats and vulnerabilities. In this paper, we have explored the threat model of vehicular fog computing and identified the threats and vulnerabilities using STRIDE and CIAA threat modeling processes. We posit that this initiative will help to improve the security and privacy system design of vehicular fog computing. 
    more » « less
  2. Security is a huge challenge in vehicular networks due to the large size of the network, high mobility of nodes, and continuous change of network topology. These challenges are also applicable to the vehicular fog, which is a new computing paradigm in the context of vehicular networks. In vehicular fog computing, the vehicles serve as fog nodes. This is a promising model for latency-sensitive and location-aware services, which also incurs some unique security and privacy issues. However, there is a lack of a systematic approach to design security solutions of the vehicular fog using a comprehensive threat model. Threat modeling is a step-by-step process to analyze, identify, and prioritize all the potential threats and vulnerabilities of a system and solve them with known security solutions. A well-designed threat model can help to understand the security and privacy threats, vulnerabilities, requirements, and challenges along with the attacker model, the attack motives, and attacker capabilities. Threat model analysis in vehicular fog computing is critical because only brainstorming and threat models of other vehicular network paradigms will not provide a complete scenario of potential threats and vulnerabilities. In this paper, we have explored the threat model of vehicular fog computing and identified the threats and vulnerabilities using STRIDE and CIAA threat modeling processes. We posit that this initiative will help to improve the security and privacy system design of vehicular fog computing. 
    more » « less
  3. Mobile edge computing (MEC) is an emerging paradigm that integrates computing resources in wireless access networks to process computational tasks in close proximity to mobile users with low latency. In this paper, we propose an online double deep Q networks (DDQN) based learning scheme for task assignment in dynamic MEC networks, which enables multiple distributed edge nodes and a cloud data center to jointly process user tasks to achieve optimal long-term quality of service (QoS). The proposed scheme captures a wide range of dynamic network parameters including non-stationary node computing capabilities, network delay statistics, and task arrivals. It learns the optimal task assignment policy with no assumption on the knowledge of the underlying dynamics. In addition, the proposed algorithm accounts for both performance and complexity, and addresses the state and action space explosion problem in conventional Q learning. The evaluation results show that the proposed DDQN-based task assignment scheme significantly improves the QoS performance, compared to the existing schemes that do not consider the effects of network dynamics on the expected long-term rewards, while scaling reasonably well as the network size increases. 
    more » « less
  4. null (Ed.)
    In recent years, the addition of billions of Internet of Thing (IoT) device spawned a massive demand for computing service near the edge of the network. Due to latency, limited mobility, and location awareness, cloud computing is not capable enough to serve these devices. As a result, the focus is shifting more towards distributed platform service to put ample computing power near the edge of the networks. Thus, paradigms such as Fog and Edge computing are gaining attention from researchers as well as business stakeholders. Fog computing is a new computing paradigm, which places computing nodes in between the Cloud and the end user to reduce latency and increase availability. As an emerging technology, Fog computing also brings newer security challenges for the stakeholders to solve. Before designing the security models for Fog computing, it is better to understand the existing threats to Fog computing. In this regard, a thorough threat model can significantly help to identify these threats. Threat modeling is a sophisticated engineering process by which a computer-based system is analyzed to discover security flaws. In this paper, we applied two popular security threat modeling processes - CIAA and STRIDE - to identify and analyze attackers, their capabilities and motivations, and a list of potential threats in the context of Fog computing. We posit that such a systematic and thorough discussion of a threat model for Fog computing will help security researchers and professionals to design secure and reliable Fog computing systems. 
    more » « less
  5. In recent years, the addition of billions of Internet of Thing (IoT) device spawned a massive demand for computing service near the edge of the network. Due to latency, limited mobility, and location awareness, cloud computing is not capable enough to serve these devices. As a result, the focus is shifting more towards distributed platform service to put ample com- puting power near the edge of the networks. Thus, paradigms such as Fog and Edge computing are gaining attention from researchers as well as business stakeholders. Fog computing is a new computing paradigm, which places computing nodes in between the Cloud and the end user to reduce latency and increase availability. As an emerging technology, Fog computing also brings newer security challenges for the stakeholders to solve. Before designing the security models for Fog computing, it is better to understand the existing threats to Fog computing. In this regard, a thorough threat model can significantly help to identify these threats. Threat modeling is a sophisticated engineering process by which a computer-based system is analyzed to discover security flaws. In this paper, we applied two popular security threat modeling processes – CIAA and STRIDE – to identify and analyze attackers, their capabilities and motivations, and a list of potential threats in the context of Fog computing. We posit that such a systematic and thorough discussion of a threat model for Fog computing will help security researchers and professionals to design secure and reliable Fog computing systems. 
    more » « less