Urbanization and population growth in coastal communities increase demands on local food and water sectors. Due to this, urban communities are reimagining stormwater pond infrastructure, asking whether the stormwater can be used to irrigate food and grow fish for local consumption. Studies exploring this feasibility are limited in the literature. Driven by a community’s desire to co-locate community gardens with stormwater pond spaces, this research monitored the water quality of a 23.4-hectare stormwater pond located in East Tampa, Florida over one year using the grab sample technique and compared the results with U.S. Environmental Protection Agency (EPA) reuse recommendations, EPA national recommended water quality criteria for aquatic life, and human health. pH and conductivity levels were acceptable for irrigating crops. Heavy metal (arsenic, cadmium, copper, lead, and zinc) concentrations were below the maximum recommended reuse levels (100, 10, 200, 5000 and 2000 µg/L, respectively), while zinc and lead were above the criteria for aquatic life (120 and 2.5 µg/L, respectively). E. coli concentrations ranged from 310 to greater than 200,000 MPN/100 mL, above the 0 CFU/100 mL irrigation requirements for raw food consumption and 200 CFU/100 mL requirements for commercial food processing. Synthetic organic compounds also exceeded criteria for human health.
more »
« less
Planar Interdigitated Aptasensor for Flow-Through Detection of Listeria spp. in Hydroponic Lettuce Growth Media
Irrigation water is a primary source of fresh produce contamination by bacteria during the preharvest, particularly in hydroponic systems where the control of pests and pathogens is a major challenge. In this work, we demonstrate the development of a Listeria biosensor using platinum interdigitated microelectrodes (Pt-IME). The sensor is incorporated into a particle/sediment trap for the real-time analysis of irrigation water in a hydroponic lettuce system. We demonstrate the application of this system using a smartphone-based potentiostat for rapid on-site analysis of water quality. A detailed characterization of the electrochemical behavior was conducted in the presence/absence of DNA and Listeria spp., which was followed by calibration in various solutions with and without flow. In flow conditions (100 mL samples), the aptasensor had a sensitivity of 3.37 ± 0.21 kΩ log-CFU−1 mL, and the LOD was 48 ± 12 CFU mL−1 with a linear range of 102 to 104 CFU mL−1. In stagnant solution with no flow, the aptasensor performance was significantly improved in buffer, vegetable broth, and hydroponic media. Sensor hysteresis ranged from 2 to 16% after rinsing in a strong basic solution (direct reuse) and was insignificant after removing the aptamer via washing in Piranha solution (reuse after adsorption with fresh aptamer). This is the first demonstration of an aptasensor used to monitor microbial water quality for hydroponic lettuce in real time using a smartphone-based acquisition system for volumes that conform with the regulatory standards. The aptasensor demonstrated a recovery of 90% and may be reused a limited number of times with minor washing steps.
more »
« less
- PAR ID:
- 10301165
- Date Published:
- Journal Name:
- Sensors
- Volume:
- 20
- Issue:
- 20
- ISSN:
- 1424-8220
- Page Range / eLocation ID:
- 5773
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In this work, we demonstrate the development of a rapid and label-free electrochemical biosensor to detectListeria monocytogenesusing a novel stimulus–response thiomer nanobrush material. Nanobrushes were developed via one-step simultaneous co-deposition of nanoplatinum (Pt) and alginate thiomers (ALG-thiomer). ALG-thiomer/Pt nanobrush platform significantly increased the average electroactive surface area of electrodes by 7 folds and maintained the actuation properties (pH-stimulated osmotic swelling) of the alginate. Dielectric behavior during brush actuation was characterized with positively, neutral, and negatively charged redox probes above and below the isoelectric point of alginate, indicating ALG-thiomer surface charge plays an important role in signal acquisition. The ALG-thiomer platform was biofunctionalized with an aptamer selective for the internalin A protein onListeriafor biosensing applications. Aptamer loading was optimized and various cell capture strategies were investigated (brush extended versus collapsed). Maximum cell capture occurs when the ALG-thiomer/aptamer is in the extended conformation (pH > 3.5), followed by impedance measurement in the collapsed conformation (pH < 3.5). Low concentrations of bacteria (5 CFU mL−1) were sensed from a complex food matrix (chicken broth) and selectivity testing against other Gram-positive bacteria (Staphylococcus aureus) indicate the aptamer affinity is maintained, even at these pH values. The new hybrid soft material is among the most efficient and fastest (17 min) forL. monocytogenesbiosensing to date, and does not require sample pretreatment, constituting a promising new material platform for sensing small molecules or cells.more » « less
-
Foodborne pathogens are a major concern for public health. We demonstrate for the first time a partially automated sensing system for rapid (~17 min), label-free impedimetric detection of Escherichia coli spp. in food samples (vegetable broth) and hydroponic media (aeroponic lettuce system) based on temperature-responsive poly(N-isopropylacrylamide) (PNIPAAm) nanobrushes. This proof of concept (PoC) for the Sense-Analyze-Respond-Actuate (SARA) paradigm uses a biomimetic nanostructure that is analyzed and actuated with a smartphone. The bio-inspired soft material and sensing mechanism is inspired by binary symbiotic systems found in nature, where low concentrations of bacteria are captured from complex matrices by brush actuation driven by concentration gradients at the tissue surface. To mimic this natural actuation system, carbon-metal nanohybrid sensors were fabricated as the transducer layer, and coated with PNIPAAm nanobrushes. The most effective coating and actuation protocol for E. coli detection at various temperatures above/below the critical solution temperature of PNIPAAm was determined using a series of electrochemical experiments. After analyzing nanobrush actuation in stagnant media, we developed a flow through system using a series of pumps that are triggered by electrochemical events at the surface of the biosensor. SARA PoC may be viewed as a cyber-physical system that actuates nanomaterials using smartphone-based electroanalytical testing of samples. This study demonstrates thermal actuation of polymer nanobrushes to detect (sense) bacteria using a cyber-physical systems (CPS) approach. This PoC may catalyze the development of smart sensors capable of actuation at the nanoscale (stimulus-response polymer) and macroscale (non-microfluidic pumping).more » « less
-
Gralnick, Jeffrey A. (Ed.)ABSTRACT Irrigation water sources have been shown to harbor foodborne pathogens and could contribute to the outbreak of foodborne illness related to consumption of contaminated produce. Determining the probability of and the degree to which these irrigation water sources contain these pathogens is paramount. The purpose of this study was to determine the prevalence of Salmonella enterica and Listeria monocytogenes in alternative irrigation water sources. Water samples ( n = 188) were collected over 2 years (2016 to 2018) from 2 reclaimed water plants, 3 nontidal freshwater rivers, and 1 tidal brackish river on Maryland’s Eastern Shore (ESM). Samples were collected by filtration using modified Moore swabs (MMS) and analyzed by culture methods. Pathogen levels were quantified using a modified most probable number (MPN) procedure with three different volumes (10 liters, 1 liter, and 0.1 liter). Overall, 65% (122/188) and 40% (76/188) of water samples were positive for S. enterica and L. monocytogenes , respectively. For both pathogens, MPN values ranged from 0.015 to 11 MPN/liter. Pathogen levels (MPN/liter) were significantly ( P < 0.05) greater for the nontidal freshwater river sites and the tidal brackish river site than the reclaimed water sites. L. monocytogenes levels in water varied based on season. Detection of S. enterica was more likely with 10-liter filtration compared to 0.1-liter filtration. The physicochemical factors measured attributed only 6.4% of the constrained variance to the levels of both pathogens. This study shows clear variations in S. enterica and L. monocytogenes levels in irrigation water sources on ESM. IMPORTANCE In the last several decades, Maryland’s Eastern Shore has seen significant declines in groundwater levels. While this area is not currently experiencing drought conditions or water scarcity, this research represents a proactive approach. Efforts, to investigate the levels of pathogenic bacteria and the microbial quality of alternative irrigation water are important for sustainable irrigation practices into the future. This research will be used to determine the suitability of alternative irrigation water sources for use in fresh produce irrigation to conserve groundwater.more » « less
-
null (Ed.)Low-cost, field-deployable, near-time methods for assessing water quality are not available when and where waterborne infection risks are greatest. We describe the development and testing of a novel device for the measurement of tryptophan-like fluorescence (TLF), making use of recent advances in deep-ultraviolet light emitting diodes (UV-LEDs) and sensitive semiconductor photodiodes and photomultipliers. TLF is an emerging indicator of water quality that is associated with members of the coliform group of bacteria and therefore potential fecal contamination. Following the demonstration of close correlation between TLF and E. coli in model waters and proof of principle with sensitivity of 4 CFU/mL for E. coli, we further developed a two-LED flow-through configuration capable of detecting TLF levels corresponding to “high risk” fecal contamination levels (>10 CFU/100 mL). Findings to date suggest that this device represents a scalable solution for remote monitoring of drinking water supplies to identify high-risk drinking water in near-time. Such information can be immediately actionable to reduce risks.more » « less
An official website of the United States government

