In this work, we demonstrate the development of a rapid and label-free electrochemical biosensor to detect
- NSF-PAR ID:
- 10301165
- Date Published:
- Journal Name:
- Sensors
- Volume:
- 20
- Issue:
- 20
- ISSN:
- 1424-8220
- Page Range / eLocation ID:
- 5773
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Listeria monocytogenes using a novel stimulus–response thiomer nanobrush material. Nanobrushes were developed via one-step simultaneous co-deposition of nanoplatinum (Pt) and alginate thiomers (ALG-thiomer). ALG-thiomer/Pt nanobrush platform significantly increased the average electroactive surface area of electrodes by 7 folds and maintained the actuation properties (pH-stimulated osmotic swelling) of the alginate. Dielectric behavior during brush actuation was characterized with positively, neutral, and negatively charged redox probes above and below the isoelectric point of alginate, indicating ALG-thiomer surface charge plays an important role in signal acquisition. The ALG-thiomer platform was biofunctionalized with an aptamer selective for the internalin A protein onListeria for biosensing applications. Aptamer loading was optimized and various cell capture strategies were investigated (brush extended versus collapsed). Maximum cell capture occurs when the ALG-thiomer/aptamer is in the extended conformation (pH > 3.5), followed by impedance measurement in the collapsed conformation (pH < 3.5). Low concentrations of bacteria (5 CFU mL−1) were sensed from a complex food matrix (chicken broth) and selectivity testing against other Gram-positive bacteria (Staphylococcus aureus ) indicate the aptamer affinity is maintained, even at these pH values. The new hybrid soft material is among the most efficient and fastest (17 min) forL. monocytogenes biosensing to date, and does not require sample pretreatment, constituting a promising new material platform for sensing small molecules or cells. -
Foodborne pathogens are a major concern for public health. We demonstrate for the first time a partially automated sensing system for rapid (~17 min), label-free impedimetric detection of Escherichia coli spp. in food samples (vegetable broth) and hydroponic media (aeroponic lettuce system) based on temperature-responsive poly(N-isopropylacrylamide) (PNIPAAm) nanobrushes. This proof of concept (PoC) for the Sense-Analyze-Respond-Actuate (SARA) paradigm uses a biomimetic nanostructure that is analyzed and actuated with a smartphone. The bio-inspired soft material and sensing mechanism is inspired by binary symbiotic systems found in nature, where low concentrations of bacteria are captured from complex matrices by brush actuation driven by concentration gradients at the tissue surface. To mimic this natural actuation system, carbon-metal nanohybrid sensors were fabricated as the transducer layer, and coated with PNIPAAm nanobrushes. The most effective coating and actuation protocol for E. coli detection at various temperatures above/below the critical solution temperature of PNIPAAm was determined using a series of electrochemical experiments. After analyzing nanobrush actuation in stagnant media, we developed a flow through system using a series of pumps that are triggered by electrochemical events at the surface of the biosensor. SARA PoC may be viewed as a cyber-physical system that actuates nanomaterials using smartphone-based electroanalytical testing of samples. This study demonstrates thermal actuation of polymer nanobrushes to detect (sense) bacteria using a cyber-physical systems (CPS) approach. This PoC may catalyze the development of smart sensors capable of actuation at the nanoscale (stimulus-response polymer) and macroscale (non-microfluidic pumping).more » « less
-
Gralnick, Jeffrey A. (Ed.)ABSTRACT Irrigation water sources have been shown to harbor foodborne pathogens and could contribute to the outbreak of foodborne illness related to consumption of contaminated produce. Determining the probability of and the degree to which these irrigation water sources contain these pathogens is paramount. The purpose of this study was to determine the prevalence of Salmonella enterica and Listeria monocytogenes in alternative irrigation water sources. Water samples ( n = 188) were collected over 2 years (2016 to 2018) from 2 reclaimed water plants, 3 nontidal freshwater rivers, and 1 tidal brackish river on Maryland’s Eastern Shore (ESM). Samples were collected by filtration using modified Moore swabs (MMS) and analyzed by culture methods. Pathogen levels were quantified using a modified most probable number (MPN) procedure with three different volumes (10 liters, 1 liter, and 0.1 liter). Overall, 65% (122/188) and 40% (76/188) of water samples were positive for S. enterica and L. monocytogenes , respectively. For both pathogens, MPN values ranged from 0.015 to 11 MPN/liter. Pathogen levels (MPN/liter) were significantly ( P < 0.05) greater for the nontidal freshwater river sites and the tidal brackish river site than the reclaimed water sites. L. monocytogenes levels in water varied based on season. Detection of S. enterica was more likely with 10-liter filtration compared to 0.1-liter filtration. The physicochemical factors measured attributed only 6.4% of the constrained variance to the levels of both pathogens. This study shows clear variations in S. enterica and L. monocytogenes levels in irrigation water sources on ESM. IMPORTANCE In the last several decades, Maryland’s Eastern Shore has seen significant declines in groundwater levels. While this area is not currently experiencing drought conditions or water scarcity, this research represents a proactive approach. Efforts, to investigate the levels of pathogenic bacteria and the microbial quality of alternative irrigation water are important for sustainable irrigation practices into the future. This research will be used to determine the suitability of alternative irrigation water sources for use in fresh produce irrigation to conserve groundwater.more » « less
-
Here we report a sensing method for
Listeria monocytogenes based on the agglutination of all-liquid Janus emulsions. This two-dye assay enables the rapid detection of traceListeria in less than 2 h via an emissive signal produced in response toListeria binding. The biorecognition interface between the Janus emulsions is assembled by attaching antibodies to a functional surfactant polymer with a tetrazine/transcyclooctene click reaction. The strong binding betweenListeria and theListeria antibody located at the hydrocarbon surface of the emulsions results in the tilting of the Janus structure from its equilibrium position to produce emission that would ordinarily be obscured by a blocking dye. This method provides rapid and inexpensiveListeria detection with high sensitivity (<100 CFU/mL in 2 h) that can be paired with many antibody or related recognition elements to create a new class of biosensors. -
Wang, Luxin (Ed.)
ABSTRACT Alternative irrigation waters (rivers, ponds, and reclaimed water) can harbor bacterial foodborne pathogens like
Salmonella enterica andListeria monocytogenes , potentially contaminating fruit and vegetable commodities. Detecting foodborne pathogens using qPCR-based methods may accelerate testing methods and procedures compared to culture-based methods. This study compared detectionof S. enterica and L. monocytogenes by qPCR (real-time PCR) and culture methods in irrigation waters to determine the influence of water type (river, pond, and reclaimed water), season (winter, spring, summer, and fall), or volume (0.1, 1, and 10 L) on sensitivity, accuracy, specificity, and positive (PPV), and negative (NPV) predictive values of these methods. Water samples were collected by filtration through modified Moore swabs (MMS) over a 2-year period at 11 sites in the Mid-Atlantic U.S. on a bi-weekly or monthly schedule. For qPCR, bacterial DNA from culture-enriched samples (n = 1,990) was analyzed by multiplex qPCR specific forS. enterica andL. monocytogenes . For culture detection, enriched samples were selectively enriched, isolated, and PCR confirmed. PPVs for qPCR detection ofS. enterica andL. monocytogenes were 68% and 67%, respectively. The NPV were 87% (S. enterica ) and 85% (L. monocytogenes ). Higher levels of qPCR/culture agreement were observed in spring and summer compared to fall and winter forS. enterica ; forL. monocytogenes , lower levels of agreement were observed in winter compared to spring, summer, and fall. Reclaimed and pond water supported higher levels of qPCR/culture agreement compared to river water for bothS. enterica andL. monocytogenes , indicating that water type may influence the agreement of these results.IMPORTANCE Detecting foodborne pathogens in irrigation water can inform interventions and management strategies to reduce risk of contamination and illness associated with fresh and fresh-cut fruits and vegetables. The use of non-culture methods like qPCR has the potential to accelerate the testing process. Results indicated that pond and reclaimed water showed higher levels of agreement between culture and qPCR methods than river water, perhaps due to specific physiochemical characteristics of the water. These findings also show that season and sample volume affect the agreement of qPCR and culture results. Overall, qPCR methods could be more confidently utilized to determine the absence of
Salmonella enterica andListeria monocytogenes in irrigation water samples examined in this study.