skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Planar Interdigitated Aptasensor for Flow-Through Detection of Listeria spp. in Hydroponic Lettuce Growth Media
Irrigation water is a primary source of fresh produce contamination by bacteria during the preharvest, particularly in hydroponic systems where the control of pests and pathogens is a major challenge. In this work, we demonstrate the development of a Listeria biosensor using platinum interdigitated microelectrodes (Pt-IME). The sensor is incorporated into a particle/sediment trap for the real-time analysis of irrigation water in a hydroponic lettuce system. We demonstrate the application of this system using a smartphone-based potentiostat for rapid on-site analysis of water quality. A detailed characterization of the electrochemical behavior was conducted in the presence/absence of DNA and Listeria spp., which was followed by calibration in various solutions with and without flow. In flow conditions (100 mL samples), the aptasensor had a sensitivity of 3.37 ± 0.21 kΩ log-CFU−1 mL, and the LOD was 48 ± 12 CFU mL−1 with a linear range of 102 to 104 CFU mL−1. In stagnant solution with no flow, the aptasensor performance was significantly improved in buffer, vegetable broth, and hydroponic media. Sensor hysteresis ranged from 2 to 16% after rinsing in a strong basic solution (direct reuse) and was insignificant after removing the aptamer via washing in Piranha solution (reuse after adsorption with fresh aptamer). This is the first demonstration of an aptasensor used to monitor microbial water quality for hydroponic lettuce in real time using a smartphone-based acquisition system for volumes that conform with the regulatory standards. The aptasensor demonstrated a recovery of 90% and may be reused a limited number of times with minor washing steps.  more » « less
Award ID(s):
1805512 1706817 1756999 1706994
PAR ID:
10301165
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Sensors
Volume:
20
Issue:
20
ISSN:
1424-8220
Page Range / eLocation ID:
5773
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A portable electrochemical aptasensor integrated with machine learning was developed for rapid and on-site detection of Staphylococcus aureus (S. aureus) in food and beverage samples. The aptasensor was fabricated using screen-printed carbon electrodes (SPCEs) modified with gold nanoparticles (AuNPs) and functionalized with an Iron-regulated Surface Determinant Protein A (IsdA)-specific aptamer for the detection of S. aureus. Approximately 2,000 cyclic voltammetry (CV) data points were collected for six different food and beverage matrices spiked with varying concentrations of S. aureus (1, 10, 500, and 1000 colony-forming unit (CFU)/mL). Each CV scan was repeated 10 times, linearly averaged, and baseline corrected before model input. Noise filtering and normalization were performed to ensure consistent feature representation across training and testing datasets. Machine learning models, including Convolutional Neural Networks (CNNs) and Transformer architectures, were applied to classify the samples. The CNN model demonstrated superior performance, with a test loss of 0.0402 and a test accuracy of 99.21%. In contrast, the Transformer model achieved a test loss of 0.2014 and an accuracy of 94.21%. To enhance usability, an Android application was developed using the Network Enabled Technologies (NET) framework, enabling real-time inference of bacterial concentration directly from CV data on mobile devices (e.g. smartphones). This system demonstrates potential for a rapid, accurate, and scalable solution for real-world food safety monitoring. 
    more » « less
  2. Abstract In this work, we demonstrate the development of a rapid and label-free electrochemical biosensor to detectListeria monocytogenesusing a novel stimulus–response thiomer nanobrush material. Nanobrushes were developed via one-step simultaneous co-deposition of nanoplatinum (Pt) and alginate thiomers (ALG-thiomer). ALG-thiomer/Pt nanobrush platform significantly increased the average electroactive surface area of electrodes by 7 folds and maintained the actuation properties (pH-stimulated osmotic swelling) of the alginate. Dielectric behavior during brush actuation was characterized with positively, neutral, and negatively charged redox probes above and below the isoelectric point of alginate, indicating ALG-thiomer surface charge plays an important role in signal acquisition. The ALG-thiomer platform was biofunctionalized with an aptamer selective for the internalin A protein onListeriafor biosensing applications. Aptamer loading was optimized and various cell capture strategies were investigated (brush extended versus collapsed). Maximum cell capture occurs when the ALG-thiomer/aptamer is in the extended conformation (pH > 3.5), followed by impedance measurement in the collapsed conformation (pH < 3.5). Low concentrations of bacteria (5 CFU mL−1) were sensed from a complex food matrix (chicken broth) and selectivity testing against other Gram-positive bacteria (Staphylococcus aureus) indicate the aptamer affinity is maintained, even at these pH values. The new hybrid soft material is among the most efficient and fastest (17 min) forL. monocytogenesbiosensing to date, and does not require sample pretreatment, constituting a promising new material platform for sensing small molecules or cells. 
    more » « less
  3. Foodborne pathogens are a major concern for public health. We demonstrate for the first time a partially automated sensing system for rapid (~17 min), label-free impedimetric detection of Escherichia coli spp. in food samples (vegetable broth) and hydroponic media (aeroponic lettuce system) based on temperature-responsive poly(N-isopropylacrylamide) (PNIPAAm) nanobrushes. This proof of concept (PoC) for the Sense-Analyze-Respond-Actuate (SARA) paradigm uses a biomimetic nanostructure that is analyzed and actuated with a smartphone. The bio-inspired soft material and sensing mechanism is inspired by binary symbiotic systems found in nature, where low concentrations of bacteria are captured from complex matrices by brush actuation driven by concentration gradients at the tissue surface. To mimic this natural actuation system, carbon-metal nanohybrid sensors were fabricated as the transducer layer, and coated with PNIPAAm nanobrushes. The most effective coating and actuation protocol for E. coli detection at various temperatures above/below the critical solution temperature of PNIPAAm was determined using a series of electrochemical experiments. After analyzing nanobrush actuation in stagnant media, we developed a flow through system using a series of pumps that are triggered by electrochemical events at the surface of the biosensor. SARA PoC may be viewed as a cyber-physical system that actuates nanomaterials using smartphone-based electroanalytical testing of samples. This study demonstrates thermal actuation of polymer nanobrushes to detect (sense) bacteria using a cyber-physical systems (CPS) approach. This PoC may catalyze the development of smart sensors capable of actuation at the nanoscale (stimulus-response polymer) and macroscale (non-microfluidic pumping). 
    more » « less
  4. Urbanization and population growth in coastal communities increase demands on local food and water sectors. Due to this, urban communities are reimagining stormwater pond infrastructure, asking whether the stormwater can be used to irrigate food and grow fish for local consumption. Studies exploring this feasibility are limited in the literature. Driven by a community’s desire to co-locate community gardens with stormwater pond spaces, this research monitored the water quality of a 23.4-hectare stormwater pond located in East Tampa, Florida over one year using the grab sample technique and compared the results with U.S. Environmental Protection Agency (EPA) reuse recommendations, EPA national recommended water quality criteria for aquatic life, and human health. pH and conductivity levels were acceptable for irrigating crops. Heavy metal (arsenic, cadmium, copper, lead, and zinc) concentrations were below the maximum recommended reuse levels (100, 10, 200, 5000 and 2000 µg/L, respectively), while zinc and lead were above the criteria for aquatic life (120 and 2.5 µg/L, respectively). E. coli concentrations ranged from 310 to greater than 200,000 MPN/100 mL, above the 0 CFU/100 mL irrigation requirements for raw food consumption and 200 CFU/100 mL requirements for commercial food processing. Synthetic organic compounds also exceeded criteria for human health. 
    more » « less
  5. Bacterial contamination in food-processing facilities is a critical issue that leads to outbreaks compromising the integrity of the food supply and public health. We developed a label-free and rapid electrochemical biosensor for Listeria monocytogenes detection using a new one-step simultaneous sonoelectrodeposition of platinum and chitosan (CHI/Pt) to create a biomimetic nanostructure that actuates under pH changes. The XPS analysis shows the effective co-deposition of chitosan and platinum on the electrode surface. This deposition was optimized to enhance the electroactive surface area by 11 times compared with a bare platinum–iridium electrode (p < 0.05). Electrochemical behavior during chitosan actuation (pH-stimulated osmotic swelling) was characterized with three different redox probes (positive, neutral, and negative charge) above and below the isoelectric point of chitosan. These results showed that using a negatively charged redox probe led to the highest electroactive surface area, corroborating previous studies of stimulus–response polymers on metal electrodes. Following this material characterization, CHI/Pt brushes were functionalized with aptamers selective for L. monocytogenes capture. These aptasensors were functional at concentrations up to 106 CFU/mL with no preconcentration nor extraneous reagent addition. Selectivity was assessed in the presence of other Gram-positive bacteria (Staphylococcus aureus) and with a food product (chicken broth). Actuation led to improved L. monocytogenes detection with a low limit of detection (33 CFU/10 mL in chicken broth). The aptasensor developed herein offers a simple fabrication procedure with only one-step deposition followed by functionalization and rapid L. monocytogenes detection, with 15 min bacteria capture and 2 min sensing. 
    more » « less