skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.


Title: A CNN Segmentation Based Approach To Object Detection And Tracking In Ultrasound Scans With Application To The Vagus Nerve Detection
Award ID(s):
1730158
NSF-PAR ID:
10301172
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Page Range / eLocation ID:
2106.13849
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Controller Area Network (CAN) is a ubiquitous bus protocol present in the Electrical/Electronic (E/E) systems of almost all vehicles. It is vulnerable to a range of attacks once the attacker gains access to the bus through the vehicle’s attack surface. We address the problem of Intrusion Detection on the CAN bus and present a series of methods based on two classifiers trained with Auxiliary Classifier Generative Adversarial Network (ACGAN) to detect and assign fine-grained labels to Known Attacks and also detect the Unknown Attack class in a dataset containing a mixture of (Normal + Known Attacks + Unknown Attack) messages. The most effective method is a cascaded two-stage classification architecture, with the multi-class Auxiliary Classifier in the first stage for classification of Normal and Known Attacks, passing Out-of-Distribution (OOD) samples to the binary Real-Fake Classifier in the second stage for detection of the Unknown Attack class. Performance evaluation demonstrates that our method achieves both high classification accuracy and low runtime overhead, making it suitable for deployment in the resource-constrained in-vehicle environment. 
    more » « less