skip to main content


Search for: All records

Award ID contains: 1730158

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Recently, deep learning‐based denoising approaches have led to dramatic improvements in low sample‐count Monte Carlo rendering. These approaches are aimed at path tracing, which is not ideal for simulating challenging light transport effects like caustics, where photon mapping is the method of choice. However, photon mapping requires very large numbers of traced photons to achieve high‐quality reconstructions. In this paper, we develop the first deep learning‐based method for particle‐based rendering, and specifically focus on photon density estimation, the core of all particle‐based methods. We train a novel deep neural network to predict a kernel function to aggregate photon contributions at shading points. Our network encodes individual photons into per‐photon features, aggregates them in the neighborhood of a shading point to construct a photon local context vector, and infers a kernel function from the per‐photon and photon local context features. This network is easy to incorporate in many previous photon mapping methods (by simply swapping the kernel density estimator) and can produce high‐quality reconstructions of complex global illumination effects like caustics with an order of magnitude fewer photons compared to previous photon mapping methods. Our approach largely reduces the required number of photons, significantly advancing the computational efficiency in photon mapping.

     
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
    Little is known about how sedentary behavior (SB) metrics derived from hip- and thigh-worn accelerometers agree for older adults. Thigh-worn activPAL (AP) micro monitors were concurrently worn with hip-worn ActiGraph (AG) GT3X+ accelerometers (with SB measured using the 100 counts per minute [cpm] cut point; AG 100cpm ) by 953 older adults (age 77 ± 6.6, 54% women) for 4–7 days. Device agreement for sedentary time and five SB pattern metrics was assessed using mean error and correlations. Logistic regression tested associations with four health outcomes using standardized (i.e.,  z scores) and unstandardized SB metrics. Mean errors (AP − AG 100cpm ) and 95% limits of agreement were: sedentary time −54.7 [−223.4, 113.9] min/day; time in 30+ min bouts 77.6 [−74.8, 230.1] min/day; mean bout duration 5.9 [0.5, 11.4] min; usual bout duration 15.2 [0.4, 30] min; breaks in sedentary time −35.4 [−63.1, −7.6] breaks/day; and alpha −.5 [−.6, −.4]. Respective Pearson correlations were: .66, .78, .73, .79, .51, and .40. Concordance correlations were: .57, .67, .40, .50, .14, and .02. The statistical significance and direction of associations were identical for AG 100cpm and AP metrics in 46 of 48 tests, though significant differences in the magnitude of odds ratios were observed among 13 of 24 tests for unstandardized and five of 24 for standardized SB metrics. Caution is needed when interpreting SB metrics and associations with health from AG 100cpm due to the tendency for it to overestimate breaks in sedentary time relative to AP. However, high correlations between AP and AG 100cpm measures and similar standardized associations with health outcomes suggest that studies using AG 100cpm are useful, though not ideal, for studying SB in older adults. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. Biscarat, C. ; Campana, S. ; Hegner, B. ; Roiser, S. ; Rovelli, C.I. ; Stewart, G.A. (Ed.)
    The High Luminosity Large Hadron Collider provides a data challenge. The amount of data recorded from the experiments and transported to hundreds of sites will see a thirty fold increase in annual data volume. A systematic approach to contrast the performance of different Third Party Copy (TPC) transfer protocols arises. Two contenders, XRootD-HTTPS and the GridFTP are evaluated in their performance for transferring files from one server to another over 100Gbps interfaces. The benchmarking is done by scheduling pods on the Pacific Research Platform Kubernetes cluster to ensure reproducible and repeatable results. This opens a future pathway for network testing of any TPC transfer protocol. 
    more » « less
  8. null (Ed.)
  9. null (Ed.)