Transfer learning has become an increasingly popular technique in machine learning as a way to leverage a pretrained model trained for one task to assist with building a finetuned model for a related task. This paradigm has been especially popular for privacy in machine learning, where the pretrained model is considered public, and only the data for finetuning is considered sensitive. However, there are reasons to believe that the data used for pretraining is still sensitive, making it essential to understand how much information the finetuned model leaks about the pretraining data. In this work we propose a new membership-inference threat model where the adversary only has access to the finetuned model and would like to infer the membership of the pretraining data. To realize this threat model, we implement a novel metaclassifier-based attack, TMI, that leverages the influence of memorized pretraining samples on predictions in the downstream task. We evaluate TMI on both vision and natural language tasks across multiple transfer learning settings, including finetuning with differential privacy. Through our evaluation, we find that TMI can successfully infer membership of pretraining examples using query access to the finetuned model.
more »
« less
Towards Improving Open Student Answer Assessment using Pretrained Transformers
The transfer learning pretraining-finetuning paradigm has revolutionized the natural language processing field yielding state-of the art results in several subfields such as text classification and question answering. However, little work has been done investigating pretrained language models for the open student answer assessment task. In this paper, we fine tune pretrained T5, BERT, RoBERTa, DistilBERT, ALBERT and XLNet models on the DT-Grade dataset which contains freely generated (or open) student answers together with judgment of their correctness. The experimental results demonstrated the effectiveness of these models based on the transfer learning pretraining-finetuning paradigm for open student answer assessment. An improvement of 8%-15% in accuracy was obtained over previous methods. Particularly, a T5 based method led to state-of-the-art results with an accuracy and F1 score of 0.88.
more »
« less
- Award ID(s):
- 1822752
- PAR ID:
- 10301174
- Date Published:
- Journal Name:
- The International FLAIRS Conference Proceedings
- Volume:
- 34
- Issue:
- 1
- ISSN:
- 2334-0762
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Language models (LMs) are pretrained to imitate text from large and diverse datasets that contain content that would violate human preferences if generated by an LM: falsehoods, offensive comments, personally identifiable information, low-quality or buggy code, among others. Here, we explore alternative objectives for pretraining LMs in a way that also guides them to generate text aligned with human preferences. We benchmark five objectives for pretraining with human feedback across three tasks and study how they affect the alignment and capabilities of pretrained LMs. We find a Pareto-optimal and simple approach among those we explored: conditional training, or learning distribution over tokens conditional on their human preference scores. Conditional training reduces the rate of undesirable content by up to an order of magnitude, both when generating without a prompt and with an adversarially-chosen prompt. Moreover, conditional training maintains the downstream task performance of standard LM pretraining, both before and after task-specific finetuning. Pretraining with human feedback results in much better preference satisfaction than standard LM pretraining followed by finetuning with feedback, i.e., learning and then unlearning undesirable behavior. Our results suggest that we should move beyond imitation learning when pretraining LMs and incorporate human preferences from the start of training.more » « less
-
Language models (LMs) are pretrained to imitate internet text, including content that would violate human preferences if generated by an LM: falsehoods, offensive comments, personally identifiable information, low-quality or buggy code, and more. Here, we explore alternative objectives for pretraining LMs in a way that also guides them to generate text aligned with human preferences. We benchmark five objectives for pretraining with human feedback across three tasks and study how they affect the trade-off between alignment and capabilities of pretrained LMs. We find a Pareto optimal and simple approach among those we explored: conditional training, or learning distribution over tokens conditional on their human preference scores given by a reward model. Conditional training reduces the rate of undesirable content by up to an order of magnitude, both when generating without a prompt and with an adversarially chosen prompt. Moreover, conditional training maintains the downstream task performance of standard LM pretraining, both before and after task-specific finetuning. Pretraining with human feedback results in much better preference satisfaction than standard LM pretraining followed by finetuning with feedback, i.e., learning and then unlearning undesirable behavior. Our results suggest that we should move beyond imitation learning when pretraining LMs and incorporate human preferences from the start of training.more » « less
-
Adopting a two-stage paradigm of pretraining followed by fine-tuning, Pretrained Language Models (PLMs) have achieved substantial advancements in the field of natural language processing. However, in real-world scenarios, data labels are often noisy due to the complex annotation process, making it essential to develop strategies for fine-tuning PLMs with such noisy labels. To this end, we introduce an innovative approach for fine-tuning PLMs using noisy labels, which incorporates the guidance of Large Language Models (LLMs) like ChatGPT. This guidance assists in accurately distinguishing between clean and noisy samples and provides supplementary information beyond the noisy labels, thereby boosting the learning process during fine-tuning PLMs. Extensive experiments on synthetic and real-world noisy datasets further demonstrate the superior advantages of our framework over the state-of-the-art baselines.more » « less
-
Abstract Clinical notes present a wealth of information for applications in the clinical domain, but heterogeneity across clinical institutions and settings presents challenges for their processing. The clinical natural language processing field has made strides in overcoming domain heterogeneity, while pretrained deep learning models present opportunities to transfer knowledge from one task to another. Pretrained models have performed well when transferred to new tasks; however, it is not well understood if these models generalize across differences in institutions and settings within the clinical domain. We explore if institution or setting specific pretraining is necessary for pretrained models to perform well when transferred to new tasks. We find no significant performance difference between models pretrained across institutions and settings, indicating that clinically pretrained models transfer well across such boundaries. Given a clinically pretrained model, clinical natural language processing researchers may forgo the time-consuming pretraining step without a significant performance drop.more » « less
An official website of the United States government

