Abstract Multifunctional organoboron compounds increasingly enable the simple generation of complex, Csp3‐rich small molecules. The ability of boron‐containing functional groups to modify the reactivity of α‐radicals has also enabled a myriad of chemical reactions. Boronic esters with vacant p‐orbitals have a significant stabilizing effect on α‐radicals due to delocalization of spin density into the empty orbital. The effect of coordinatively saturated derivatives, such as N‐methyliminodiacetic acid (MIDA) boronates and counterparts, remains less clear. Herein, we demonstrate that coordinatively saturated MIDA and TIDA boronates stabilize secondary alkyl α‐radicals via σB‐Nhyperconjugation in a manner that allows site‐selective C−H bromination. DFT calculated radical stabilization energies and spin density maps as well as LED NMR kinetic analysis of photochemical bromination rates of different boronic esters further these findings. This work clarifies that the α‐radical stabilizing effect of boronic esters does not only proceed via delocalization of radical character into vacant boron p‐orbitals, but that hyperconjugation of tetrahedral boron‐containing functional groups and their ligand electron delocalizing ability also play a critical role. These findings establish boron ligands as a useful dial for tuning reactivity at the α‐carbon.
more »
« less
Opportunities Using Boron to Direct Reactivity in the Organic Solid State
Abstract This Account describes work by our research group that highlights opportunities to utilize organoboron molecules to direct chemical reactivity in the organic solid state. Specifically, we convey a previously unexplored use of hydrogen bonding of boronic acids and boron coordination in boronic esters to achieve [2+2]-photocycloadditions in crystalline solids. Organoboron molecules act as templates or ‘shepherds’ to organize alkenes in a suitable geometry to undergo regio- and stereoselective [2+2]-photocycloadditions in quantitative yields. We also provide a selection of publications that served as an inspiration for our strategies and offer challenges and opportunities for future developments of boron in the field of materials and solid-state chemistry. 1 Introduction 1.1 Template Strategy for [2+2]-Photocycloadditions in the Solid State 2 Boronic Acids as Templates for [2+2]-Photocycloadditions in the Solid State 2.1 Supramolecular Catalysis of [2+2]-Photocycloadditions in the Solid State Using Boronic Acids 3 Boronic Esters as Templates for [2+2]-Photocycloadditions in the Solid State 3.1 Application of Photoproducts: Separation of Thiophene from Benzene through Crystallization 3.2 Crystal Reactivity of B←N-Bonded Adducts: The Case of Styrylthiophenes 4 Conclusions and Perspectives
more »
« less
- Award ID(s):
- 1828117
- PAR ID:
- 10301423
- Date Published:
- Journal Name:
- Synlett
- Volume:
- 32
- Issue:
- 07
- ISSN:
- 0936-5214
- Page Range / eLocation ID:
- 655 to 662
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Alkyl boronic acids and esters are versatile synthetic intermediates that generally require several steps to synthesize. Three-component alkene arylboration reactions allow for the rapid synthesis of alkyl boronic esters. Herein, we report the base-free aerobic Pd-catalyzed three-component alkene arylboration, which allows direct access, in a single step, to alkyl boronic esters from readily available precursors: aryl boronic acids, alkenes, and bis(pinacol)diboron. This approach allows for the formal insertion of an alkene into an Ar–B bond, and thus, generates an alkyl boronic ester from an aryl boronic acid. The reaction proceeds with both electron-rich and electron-deficient aryl boronic acids as well as strained cyclic, internal, and terminal olefins. The reactions are regioselective: 1,2-arylboration products are formed with strained cyclic alkenes and b-alkyl-styrenes while 1,1-arylboration products are generated from terminal alkenes. Forty-five examples are presented with isolated yields of the resulting alkyl boronic esters ranging from 20-74%, along with several examples demonstrating the synthetic utility of the products. Mechanistic investigations support that the catalytic cycle occurs through direct arylboration of the alkene. Further, p-benzyl intermediates form when possible, and the rate of borylation is increased with electron-rich arenes relative to electron-poor. Finally, we demonstrate that aryl boroxines, generated in situ, are essential for the transformation as they rapidly undergo base-free transmetalation with the proposed palladium peroxo intermediate.more » « less
-
We have developed a convergent method for the synthesis of allylic alcohols that involves a reductive coupling of terminal alkynes with α-chloro boronic esters. The new method affords allylic alcohols with excellent regioselectivity (anti-Markovnikov) and an E/Z ratio greater than 200:1. The reaction can be performed in the presence of a wide range of functional groups and has a substrate scope that complements the stoichiometric alkenylation of α-chloro boronic esters performed using alkenyl lithium and Grignard reagents. The transformation is stereospecific and allows for the robust and highly selective synthesis of chiral allylic alcohols. Our studies support a mechanism that involves hydrocupration of the alkyne and cross-coupling of the alkenyl copper intermediate with α-chloro boronic esters. Experimental evidence excludes a radical mechanism of the cross-coupling step and is consistent with the formation of a boron-ate intermediate and a 1,2-metalate shift.more » « less
-
Abstract A Pd‐catalyzed heterocyclization/carbonylation/arylation cascade reaction between β,γ‐unsaturated N−Ts hydrazones and commercially available arylboronic acids as coupling partners is described, producing 2‐pyrazoline‐ketone derivatives in 11–78% yield. A detailed statistical analysis of reactivity patterns of boronic acids provided key information about the limitations of the method, highlighting the challenges of degradation pathways. Our methodology offers a tool for synthesizing diverse 2‐pyrazoline‐ketone derivatives, expanding the toolbox of accessible N−N‐heterocycles.more » « less
-
Transition metal interactions with Lewis acids (M → Z linkages) are fundamentally interesting and practically important. The most common Z-type ligands contain boron, which contains an NMR active 11 B nucleus. We measured solid-state 11 B{ 1 H} NMR spectra of copper, silver, and gold complexes containing a phosphine substituted 9,10-diboraanthracene ligand (B 2 P 2 ) that contain planar boron centers and weak M → BR 3 linkages ([(B 2 P 2 )M][BAr F 4 ] (M = Cu (1), Ag (2), Au (3)) characterized by large quadrupolar coupling ( C Q ) values (4.4–4.7 MHz) and large span ( Ω ) values (93–139 ppm). However, the solid-state 11 B{ 1 H} NMR spectrum of K[Au(B 2 P 2 )] − (4), which contains tetrahedral borons, is narrow and characterized by small C Q and Ω values. DFT analysis of 1–4 shows that C Q and Ω are expected to be large for planar boron environments and small for tetrahedral boron, and that the presence of a M → BR 3 linkage relates to the reduction in C Q and 11 B NMR shielding properties. Thus solid-state 11 B NMR spectroscopy contains valuable information about M → BR 3 linkages in complexes containing the B 2 P 2 ligand.more » « less
An official website of the United States government

