skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Great Plains Irrigation Experiment (GRAINEX)
Abstract Extensive expansion in irrigated agriculture has taken place over the last half century. Due to increased irrigation and resultant land-use–land-cover change, the central United States has seen a decrease in temperature and changes in precipitation during the second half of the twentieth century. To investigate the impacts of widespread commencement of irrigation at the beginning of the growing season and continued irrigation throughout the summer on local and regional weather, the Great Plains Irrigation Experiment (GRAINEX) was conducted in the spring and summer of 2018 in southeastern Nebraska. GRAINEX consisted of two 15-day intensive observation periods. Observational platforms from multiple agencies and universities were deployed to investigate the role of irrigation in surface moisture content, heat fluxes, diurnal boundary layer evolution, and local precipitation. This article provides an overview of the data collected and an analysis of the role of irrigation in land–atmosphere interactions on time scales from the seasonal to the diurnal. The analysis shows that a clear irrigation signal was apparent during the peak growing season in mid-July. This paper shows the strong impact of irrigation on surface fluxes, near-surface temperature and humidity, and boundary layer growth and decay.  more » « less
Award ID(s):
1720477
PAR ID:
10301498
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Bulletin of the American Meteorological Society
Volume:
102
Issue:
9
ISSN:
0003-0007
Page Range / eLocation ID:
E1756 to E1785
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Modification of grasslands into irrigated and nonirrigated agriculture in the Great Plains resulted in significant impacts on weather and climate. However, there has been lack of observational data–based studies solely focused on impacts of irrigation on the PBL and convective conditions. The Great Plains Irrigation Experiment (GRAINEX), conducted during the 2018 growing season, collected data over irrigated and nonirrigated land uses over Nebraska to understand these impacts. Specifically, the objective was to determine whether the impacts of irrigation are sustained throughout the growing season. The data analyzed include latent and sensible heat flux, air temperature, dewpoint temperature, equivalent temperature (moist enthalpy), PBL height, lifting condensation level (LCL), level of free convection (LFC), and PBL mixing ratio. Results show increased partitioning of energy into latent heat relative to sensible heat over irrigated areas while average maximum air temperature was decreased and dewpoint temperature was increased from the early to peak growing season. Radiosonde data suggest reduced planetary boundary layer (PBL) heights at all launch sites from the early to peak growing season. However, reduction of PBL height was much greater over irrigated areas than over nonirrigated croplands. Relative to the early growing period, LCL and LFC heights were also lower during the peak growing period over irrigated areas. Results note, for the first time, that the impacts of irrigation on PBL evolution and convective environment can be sustained throughout the growing season and regardless of background atmospheric conditions. These are important findings and applicable to other irrigated areas in the world. Significance StatementTo meet the ever-increasing demand for food, many regions of the world have adopted widespread irrigation. The High Plains Aquifer (HPA) region, located within the Great Plains of the United States, is one of the most extensively irrigated regions. In this study, for the first time, we have conducted a detailed irrigation-focused land surface and atmospheric data collection campaign to determine irrigation impacts on the atmosphere. This research demonstrates that irrigation significantly alters lower atmospheric characteristics and creates favorable cloud and convection development conditions during the growing season. The results clearly show first-order impacts of irrigation on regional weather and climate and hence warrant further attention so that we can minimize negative impacts and achieve sustainable irrigation. 
    more » « less
  2. Abstract Recent studies have suggested that the structure of tropical cyclones (TCs), especially the upper‐level clouds as indicated by satellite infrared brightness temperatures and precipitation, fluctuates with the diurnal cycle. The diurnal cycle of the low‐level structure, including the boundary layer, has not yet been investigated with observations. This study analyzes data from 2242 GPS dropsondes collected in mature hurricanes to investigate the diurnal variation of the mean boundary layer structure. A composite analysis is conducted to compare the kinematic and thermodynamic structure during nighttime (0–6 local time) vs in the afternoon (12–18 local time). The composites show that much stronger inflow occurs during nighttime and the moist entropy is also larger than that in the daytime. Grouping the dropsonde data into 6‐h time windows relative to the local time shows a clear diurnal signal of boundary layer inflow. The amplitude of the diurnal signal is largest at a radius of 250–500 km. 
    more » « less
  3. Abstract. Irrigation has important implications for sustaining global food production by enabling crop water demand to be met even under dry conditions.Added water also cools crop plants through transpiration; irrigation mightthus play an important role in a warmer climate by simultaneously moderating water and high temperature stresses. Here we used satellite-derived evapotranspiration estimates, land surface temperature (LST) measurements, and crop phenological stage information from Nebraska maize to quantify how irrigation relieves both water and temperature stresses. Unlike air temperature metrics, satellite-derived LST revealed a significant irrigation-induced cooling effect, especially during the grain filling period (GFP) of crop growth. This cooling appeared to extend the maize growing season, especially for GFP, likely due to the stronger temperature sensitivity of phenological development during this stage. Our analysis also revealed that irrigation not only reduced water and temperature stress but also weakened the response of yield to these stresses. Specifically, temperature stress was significantly weakened for reproductive processes in irrigated maize. Attribution analysis further suggested that water and high temperature stress alleviation was responsible for 65±10 % and 35±5.3 % of the irrigation yield benefit, respectively. Our study underlines the relative importance of high temperature stress alleviation in yield improvement and the necessity of simulating crop surface temperature to better quantify heat stress effects in crop yield models. Finally, considering the potentially strong interaction between water and heat stress, future research on irrigation benefits should explore the interaction effects between heat and drought alleviation. 
    more » « less
  4. Subseasonal to seasonal forecasts are likely to improve from better sea surface temperature (SST) predictions, as SST is the bottom boundary condition for the marine atmosphere. We present research that extends the analysis and prediction of SST to include variability of upper ocean mixing to explore how the variability of the ocean mixed layer affects the intraseasonal statistics of SST and its covariance with tropical intraseasonal atmospheric variability. We present a conceptual framework to identify the contribution of fast (hourly to daily) co-variations in ocean mixed layer depth and atmospheric fluxes to seasonal to sub-seasonal sea surface temperature prediction. First, metrics from this framework will be analyzed from data collected throughout the tropical and subtropical oceans from moored platforms and profiling instruments to demonstrate how diurnal solar warming, fast wind gusts and rain showers, and daily variable clouds and winds rectify into longer timescale intraseasonal SST variability. We will then focus the pre-monsoon season in the Arabian Sea using observations of the upper ocean collected during the 2023 ASTRraL/EKAMSAT field program, highlighting the role of the diurnal warm layer variability on mean SST. 
    more » « less
  5. Hydroclimate and terrestrial hydrology greatly influence the local community, ecosystem, and economy in Alaska and Yukon River Basin. A high‐resolution simulation of the historical climate in Alaska can provide an important benchmark for climate change studies. In this study, we utilized the Regional Arctic System Model (RASM) and conducted coupled land‐atmosphere modeling for Alaska and Yukon River Basin at 4‐km grid spacing. In RASM, the land model was replaced with the Community Terrestrial Systems Model (CTSM) given its comprehensive process representations for cold regions. The microphysics schemes in the Weather Research and Forecast (WRF) atmospheric model were manually tuned for optimal model performance. This study aims to maintain good model performance for both hydroclimate and terrestrial hydrology, especially streamflow, which was rarely a priority in coupled models. Therefore, we implemented a strategy of iterative testing and optimization of CTSM. A multi‐decadal climate data set (1990–2021) was generated using RASM with optimized land parameters and manually tuned WRF microphysics. When evaluated against multiple observational data sets, this data set well captures the climate statistics and spatial distributions for five key weather variables and hydrologic fluxes, including precipitation, air temperature, snow fraction, evaporation‐to‐precipitation ratios, and streamflow. The simulated precipitation shows wet bias during the spring season and simulated air temperatures exhibit dampened seasonality with warm biases in winter and cold biases in summer. We used transfer entropy to investigate the discrepancy in connectivity of hydrologic and energy fluxes between the offline CTSM and coupled models, which contributed to their discrepancy in streamflow simulations. 
    more » « less