skip to main content


Title: Minimizing network bandwidth under latency constraints: The single node case
Much of today's traffic flows between datacenters over private networks. The operators of those networks have access to detailed traffic profiles with performance goals that need to be met as efficiently as possible, e.g., realizing latency guarantees with minimal network bandwidth. Of particular interest is the extent to which traffic (re)shaping can be of benefit. The paper focuses on the most basic network configuration, namely, a single link network, with extensions to more general, multi-node networks discussed in a companion paper. The main results are in the form of optimal solutions for different types of schedulers of varying complexity. They demonstrate how judicious traffic shaping can help lower complexity schedulers perform nearly as well as more complex ones.  more » « less
Award ID(s):
2006530
NSF-PAR ID:
10301515
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings 33rd International Teletraffic Congress (ITC 33)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sural, Shamik ; Lu, Haibing (Ed.)

    Modern network infrastructures are in a constant state of transformation, in large part due to the exponential growth of Internet of Things (IoT) devices. The unique properties of IoT-connected networks, such as heterogeneity and non-standardized protocol, have created critical security holes and network mismanagement. In this paper we propose a new measurement tool, Intrinsic Dimensionality (ID), to aid in analyzing and classifying network traffic. A proxy for dataset complexity, ID can be used to understand the network as a whole, aiding in tasks such as network management and provisioning. We use ID to evaluate several modern network datasets empirically. Showing that, for network and device-level data, generated using IoT methodologies, the ID of the data fits into a low dimensional representation. Additionally we explore network data complexity at the sample level using Local Intrinsic Dimensionality (LID) and propose a novel unsupervised intrusion detection technique, the Weighted Hamming LID Estimator. We show that the algortihm performs better on IoT network datasets than the Autoencoder, KNN, and Isolation Forests. Finally, we propose the use of synthetic data as an additional tool for both network data measurement as well as intrusion detection. Synthetically generated data can aid in building a more robust network dataset, while also helping in downstream tasks such as machine learning based intrusion detection models. We explore the effects of synthetic data on ID measurements, as well as its role in intrusion detection systems.

     
    more » « less
  2. This paper examines the impact of roundabouts implemented at intersections throughout a dense urban network on its operational performance. Metrics considered include the average free-flow speed, flow-moving capacity, trip-serving capacity, and fuel consumption rate. Three intersection strategies are compared: signalized intersections allowing left turns in a permitted manner (TWs), signalized intersections prohibiting left turns (TWLs), and modern roundabouts (RBs). Using the approaches of macroscopic fundamental diagrams and network exit functions, both analytical investigations and microscopic traffic simulations for grid networks were conducted. In general, the results from both analyses agree well. The results reveal that when single-lane roundabouts are applied in networks with a single travel in each direction, the RB network outperforms the TW network for all operational metrics. The RB network also outperforms the TWL network in free-flow speed and flow-moving capacity and has a similar trip-serving capacity as the TWL network. However, when roundabouts with two travel lanes are applied on multi-lane networks, the TWL network exceeds the RB network in both flow-moving and trip-serving capacities. This decrease in the performance of the RB network could possibly come from the complexity imposed on the entering vehicle that wants to use the inner lane. Moreover, because vehicles in the RB network need to accelerate/decelerate more frequently those in the other networks, the RB network generates a higher fuel consumption rate in uncongested and capacity conditions. The findings suggest intersections of roundabouts could be beneficial for networks with a single travel lane in each direction.

     
    more » « less
  3. Accessing the Internet through Wi-Fi networks offers an inexpensive alternative for offloading data from mobile broadband connections. Businesses such as fast food restaurants, coffee shops, hotels, and airports, provide complimentary Internet access to their customers through Wi-Fi networks. Clients can connect to the Wi-Fi hotspot using different wireless devices. However, network administrators may apply traffic shaping to control the wireless client's upload and download data rates. Such limitation is used to avoid overloading the hotspot, thus providing fair bandwidth allocation. Also, it allows for the collection of money from the client in order to have access to a faster Internet service. In this paper, we present a new technique to avoid bandwidth limitation imposed by Wi-Fi hotspots. The proposed method creates multiple virtual wireless clients using only one physical wireless interface card. Each virtual wireless client emulates a standalone wireless device. The combination of the individual bandwidth of each virtual wireless client results in an increase of the total bandwidth gained by the attacker. Our proposed technique was implemented and evaluated in a real-life environment with an increase in data rate up to 16 folds. 
    more » « less
  4. The increasing ubiquity of network traffic and the new online applications’ deployment has increased traffic analysis complexity. Traditionally, network administrators rely on recognizing well-known static ports for classifying the traffic flowing their networks. However, modern network traffic uses dynamic ports and is transported over secure application-layer protocols (e.g., HTTPS, SSL, and SSH). This makes it a challenging task for network administrators to identify online applications using traditional port-based approaches. One way for classifying the modern network traffic is to use machine learning (ML) to distinguish between the different traffic attributes such as packet count and size, packet inter-arrival time, packet send–receive ratio, etc. This paper presents the design and implementation of NetScrapper, a flow-based network traffic classifier for online applications. NetScrapper uses three ML models, namely K-Nearest Neighbors (KNN), Random Forest (RF), and Artificial Neural Network (ANN), for classifying the most popular 53 online applications, including Amazon, Youtube, Google, Twitter, and many others. We collected a network traffic dataset containing 3,577,296 packet flows with different 87 features for training, validating, and testing the ML models. A web-based user-friendly interface is developed to enable users to either upload a snapshot of their network traffic to NetScrapper or sniff the network traffic directly from the network interface card in real time. Additionally, we created a middleware pipeline for interfacing the three models with the Flask GUI. Finally, we evaluated NetScrapper using various performance metrics such as classification accuracy and prediction time. Most notably, we found that our ANN model achieves an overall classification accuracy of 99.86% in recognizing the online applications in our dataset. 
    more » « less
  5. Emerging 5G systems will need to efficiently support both enhanced mobile broadband traffic (eMBB) and ultra-low- latency communications (URLLC) traffic. In these systems, time is divided into slots which are further sub-divided into minislots. From a scheduling perspective, eMBB resource allocations occur at slot boundaries, whereas to reduce latency URLLC traffic is pre-emptively overlapped at the minislot timescale, resulting in selective superposition/puncturing of eMBB allocations. This approach enables minimal URLLC latency at a potential rate loss to eMBB traffic. We study joint eMBB and URLLC schedulers for such systems, with the dual objectives of maximizing utility for eMBB traffic while immediately satisfying URLLC demands. For a linear rate loss model (loss to eMBB is linear in the amount of URLLC superposition/puncturing), we derive an optimal joint scheduler. Somewhat counter-intuitively, our results show that our dual objectives can be met by an iterative gradient scheduler for eMBB traffic that anticipates the expected loss from URLLC traffic, along with an URLLC demand scheduler that is oblivious to eMBB channel states, utility functions and allocation decisions of the eMBB scheduler. Next we consider a more general class of (convex/threshold) loss models and study optimal online joint eMBB/URLLC schedulers within the broad class of channel state dependent but minislot-homogeneous policies. A key observation is that unlike the linear rate loss model, for the convex and threshold rate loss models, optimal eMBB and URLLC schedul- ing decisions do not de-couple and joint optimization is necessary to satisfy the dual objectives. We validate the characteristics and benefits of our schedulers via simulation. 
    more » « less