skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impacts of the Use of Machine Learning on Work Design
The increased pervasiveness of technological advancements in automation makes it urgent to address the question of how work is changing in response. Focusing on applications of machine learning (ML) to automate information tasks, we draw on a simple framework for identifying the impacts of an automated system on a task that suggests 3 patterns for the use of ML—decision support, blended decision making and complete automation. In this paper, we extend this framework by considering how automation of one task might have implications for interdependent tasks and how automation applies to coordination mechanisms.  more » « less
Award ID(s):
2026583 1745463
PAR ID:
10301600
Author(s) / Creator(s):
;
Date Published:
Journal Name:
8th International Conference on Human-Agent Interaction
Page Range / eLocation ID:
163 to 170
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Level of automation (LoA) is increasingly recognized as an important principle in improving manufacturing strategies. However, many automation decisions are made without formally assessing LoA and can be made based on a host of organizational factors, like varied mental models used by managers in decision-making. In this study, respondents (N = 186) were asked to watch five different assembly tasks being completed in an automotive manufacturing environment, and then identify “how automated” or “how manual” they perceived the task to be. Responses were given using a visual analogue scale (VAS) and sliding scale, where possible responses ranged from 0 (totally manual) to 100 (totally automated). The activity explored how and when individuals recognized the automated technologies being employed in each task. The tasks of the videos varied primarily by whether the human played active or passive role in the process. Focus group comments collected as a part of the study show how rating patterns revealed functional systems-level thinking and a focus on cognitive automation in manufacturing. While the video ratings generally followed the LoA framework discussed, slight departures in the rating of each video were found. 
    more » « less
  2. We present a framework for understanding the effects of automation and other types of technological changes on labor demand, and use it to interpret changes in US employment over the recent past. At the center of our framework is the allocation of tasks to capital and labor—the task content of production. Automation, which enables capital to replace labor in tasks it was previously engaged in, shifts the task content of production against labor because of a displacement effect. As a result, automation always reduces the labor share in value added and may reduce labor demand even as it raises productivity. The effects of automation are counterbalanced by the creation of new tasks in which labor has a comparative advantage. The introduction of new tasks changes the task content of production in favor of labor because of a reinstatement effect, and always raises the labor share and labor demand. We show how the role of changes in the task content of production—due to automation and new tasks—can be inferred from industry-level data. Our empirical decomposition suggests that the slower growth of employment over the last three decades is accounted for by an acceleration in the displacement effect, especially in manufacturing, a weaker reinstatement effect, and slower growth of productivity than in previous decades. 
    more » « less
  3. We document that between 50% and 70% of changes in the U.S. wage structure over the last four decades are accounted for by relative wage declines of worker groups specialized in routine tasks in industries experiencing rapid automation. We develop a conceptual framework where tasks across industries are allocated to different types of labor and capital. Automation technologies expand the set of tasks performed by capital, displacing certain worker groups from jobs for which they have comparative advantage. This framework yields a simple equation linking wage changes of a demographic group to the task displacement it experiences. We report robust evidence in favor of this relationship and show that regression models incorporating task displacement explain much of the changes in education wage differentials between 1980 and 2016. The negative relationship between wage changes and task displacement is unaffected when we control for changes in market power, deunionization, and other forms of capital deepening and technology unrelated to automation. We also propose a methodology for evaluating the full general equilibrium effects of automation, which incorporate induced changes in industry composition and ripple effects due to task reallocation across different groups. Our quantitative evaluation explains how major changes in wage inequality can go hand‐in‐hand with modest productivity gains. 
    more » « less
  4. Humans are the final decision makers in critical tasks that involve ethical and legal concerns, ranging from recidivism prediction, to medical diagnosis, to fighting against fake news. Although machine learning models can sometimes achieve impressive performance in these tasks, these tasks are not amenable to full automation. To realize the potential of machine learning for improving human decisions, it is important to understand how assistance from machine learning models affects human performance and human agency. In this paper, we use deception detection as a testbed and investigate how we can harness explanations and predictions of machine learning models to improve human performance while retaining human agency. We propose a spectrum between full human agency and full automation, and develop varying levels of machine assistance along the spectrum that gradually increase the influence of machine predictions. We find that without showing predicted labels, explanations alone slightly improve human performance in the end task. In comparison, human performance is greatly improved by showing predicted labels (>20% relative improvement) and can be further improved by explicitly suggesting strong machine performance. Interestingly, when predicted labels are shown, explanations of machine predictions induce a similar level of accuracy as an explicit statement of strong machine performance. Our results demonstrate a tradeoff between human performance and human agency and show that explanations of machine predictions can moderate this tradeoff. 
    more » « less
  5. We measure the labor-demand effects of two simultaneous forms of technological change—automation of production processes and consolidation of parts. We collect detailed shop-floor data from four semiconductor firms with different levels of automation and consolidation. Using the O*NET survey instrument, we collect novel task data for operator laborers that contains process-step level skill requirements, including operations and control, near vision, and dexterity requirements. We then use an engineering process model to separate the effects of the distinct technological changes on these process tasks and operator skill requirements. Within an occupation, we show that aggregate measures of technological change can mask the opposing skill biases of multiple simultaneous technological changes. In our empirical context, automation polarizes skill demand as routine, codifiable tasks requiring low and medium skills are executed by machines instead of humans, whereas the remaining and newly created human tasks tend to require low and high skills. Consolidation converges skill demand as formerly divisible low and high skill tasks are transformed into a single indivisible task with medium skill requirements and higher cost of failure. We conclude by developing a new theory for how the separability of tasks mediates the effect of technology change on skill demand by changing the divisibility of labor. 
    more » « less