Abstract Bioresorbable electronic technologies form the basis for classes of biomedical devices that undergo complete physical and chemical dissolution after a predefined operational period, thereby eliminating the costs and risks associated with secondary surgical extraction. A continuing area of opportunity is in the development of strategies for power supply for these systems, where previous studies demonstrate some utility for biodegradable batteries, radio frequency harvesters, solar cells, and others. This paper introduces a type of bioresorbable system for wireless power transfer, in which a rotating magnet serves as the transmitter and a bioresorbable antenna as the remote receiver, with capabilities for operation at low frequencies (<200 Hz). Systematic experimental and numerical studies demonstrate several unique advantages of this system, most significantly the elimination of impedance matching and electromagnetic radiation exposure presented with the types of radio frequency energy harvesters explored previously. These results add to the portfolio of power supply options in bioresorbable electronic implants. 
                        more » 
                        « less   
                    
                            
                            Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration
                        
                    
    
            Abstract Bioresorbable electronic stimulators are of rapidly growing interest as unusual therapeutic platforms, i.e., bioelectronic medicines, for treating disease states, accelerating wound healing processes and eliminating infections. Here, we present advanced materials that support operation in these systems over clinically relevant timeframes, ultimately bioresorbing harmlessly to benign products without residues, to eliminate the need for surgical extraction. Our findings overcome key challenges of bioresorbable electronic devices by realizing lifetimes that match clinical needs. The devices exploit a bioresorbable dynamic covalent polymer that facilitates tight bonding to itself and other surfaces, as a soft, elastic substrate and encapsulation coating for wireless electronic components. We describe the underlying features and chemical design considerations for this polymer, and the biocompatibility of its constituent materials. In devices with optimized, wireless designs, these polymers enable stable, long-lived operation as distal stimulators in a rat model of peripheral nerve injuries, thereby demonstrating the potential of programmable long-term electrical stimulation for maintaining muscle receptivity and enhancing functional recovery. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1635443
- PAR ID:
- 10301646
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Physically transient forms of electronics enable unique classes of technologies, ranging from biomedical implants that disappear through processes of bioresorption after serving a clinical need to internet-of-things devices that harmlessly dissolve into the environment following a relevant period of use. Here, we develop a sustainable manufacturing pathway, based on ultrafast pulsed laser ablation, that can support high-volume, cost-effective manipulation of a diverse collection of organic and inorganic materials, each designed to degrade by hydrolysis or enzymatic activity, into patterned, multi-layered architectures with high resolution and accurate overlay registration. The technology can operate in patterning, thinning and/or cutting modes with (ultra)thin eco/bioresorbable materials of different types of semiconductors, dielectrics, and conductors on flexible substrates. Component-level demonstrations span passive and active devices, including diodes and field-effect transistors. Patterning these devices into interconnected layouts yields functional systems, as illustrated in examples that range from wireless implants as monitors of neural and cardiac activity, to thermal probes of microvascular flow, and multi-electrode arrays for biopotential sensing. These advances create important processing options for eco/bioresorbable materials and associated electronic systems, with immediate applicability across nearly all types of bioelectronic studies.more » « less
- 
            Abstract A key challenge in bioelectronics is to establish and improve the interface between electronic devices and living tissues, enabling a direct assessment of biological systems. Sensors integrated with plant tissue can provide valuable information about the plant itself as well as the surrounding environment, including air and soil quality. An obstacle in developing interfaces to plant tissue is mitigating the formation of fibrotic tissues, which can hinder continuous and accurate sensor operation over extended timeframes. Electronic systems that utilize suitable biocompatible materials alongside appropriate fabrication techniques to establish plant-electronic interfaces could provide for enhanced environmental understanding and ecosystem management capabilities. To meet these demands, this study introduces an approach for integrating printed electronic materials with biocompatible cryogels, resulting in stable implantable hydrogel-based bioelectronic devices capable of long-term operation within plant tissue. These inkjet-printed cryogels can be customized to provide various electronic functionalities, including electrodes and organic electrochemical transistors (OECTs), that exhibit high electrical conductivity for embedded conducting polymer traces (up to 350 S/cm), transconductance for OECTs in the mS range, a capacitance of up to 4.2 mF g−1in suitable structures, high stretchability (up to 330% strain), and self-healing properties. The biocompatible functionalized cryogel-based electrodes and transistors were successfully implanted in plant tissue, and ionic activity in tomato plant stems was collected for over two months with minimal scar tissue formation, making these cryogel-based printed electronic devices excellent candidates for continuous, in-situ monitoring of plant and environmental status and health.more » « less
- 
            Abstract Injured peripheral nerves typically exhibit unsatisfactory and incomplete functional outcomes, and there are no clinically approved therapies for improving regeneration. Post‐operative electrical stimulation (ES) increases axon regrowth, but practical challenges, from the cost of extended operating room time to the risks and pitfalls associated with transcutaneous wire placement, have prevented broad clinical adoption. This study presents a possible solution in the form of advanced bioresorbable materials for a type of thin, flexible, wireless implant that provides precisely controlled ES of the injured nerve for a brief time in the immediate post‐operative period. Afterward, rapid, complete, and safe modes of bioresorption naturally and quickly eliminate all of the constituent materials in their entirety, without the need for surgical extraction. The unusually high rate of bioresorption follows from the use of a unique, bilayer enclosure that combines two distinct formulations of a biocompatible form of polyanhydride as an encapsulating structure, to accelerate the resorption of active components and confine fragments until complete resorption. Results from mouse models of tibial nerve transection with re‐anastomosis indicate that this system offers levels of performance and efficacy that match those of conventional wired stimulators, but without the need to extend the operative period or to extract the device hardware.more » « less
- 
            Bioelectronic devices and components made from soft, polymer-based and hybrid electronic materials form natural interfaces with the human body. Advances in the molecular design of stretchable dielectric, conducting and semiconducting polymers, as well as their composites with various metallic and inorganic nanoscale or microscale materials, have led to more unobtrusive and conformal interfaces with tissues and organs. Nonetheless, technical challenges associated with functional performance, stability and reliability of integrated soft bioelectronic systems still remain. This Review discusses recent progress in biomedical applications of soft organic and hybrid electronic materials, device components and integrated systems for addressing these challenges. We first discuss strategies for achieving soft and stretchable devices, highlighting molecular and materials design concepts for incorporating intrinsically stretchable functional materials. We next describe design strategies and considerations on wearable devices for on-skin sensing and prostheses. Moving beneath the skin, we discuss advances in implantable devices enabled by materials and integrated devices with tissue-like mechanical properties. Finally, we summarize strategies used to build standalone integrated systems and whole-body networks to integrate wearable and implantable bioelectronic devices with other essential components, including wireless communication units, power sources, interconnects and encapsulation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    