Language-guided smart systems can help to design next-generation human-machine interactive applications. The dense text description is one of the research areas where systems learn the semantic knowledge and visual features of each video frame and map them to describe the video's most relevant subjects and events. In this paper, we consider untrimmed sports videos as our case study. Generating dense descriptions in the sports domain to supplement journalistic works without relying on commentators and experts requires more investigation. Motivated by this, we propose an end-to-end automated text-generator, SpecTextor, that learns the semantic features from untrimmed videos of sports games and generates associated descriptive texts. The proposed approach considers the video as a sequence of frames and sequentially generates words. After splitting videos into frames, we use a pre-trained VGG-16 model for feature extraction and encoding the video frames. With these encoded frames, we posit a Long Short-Term Memory (LSTM) based attention-decoder pipeline that leverages soft-attention mechanism to map the semantic features with relevant textual descriptions to generate the explanation of the game. Because developing a comprehensive description of the game warrants training on a set of dense time-stamped captions, we leverage two available public datasets: ActivityNet Captions and Microsoft Video Description. In addition, we utilized two different decoding algorithms: beam search and greedy search and computed two evaluation metrics: BLEU and METEOR scores.
more »
« less
InFillmore: Frame-Guided Language Generation with Bidirectional Context
We propose a structured extension to bidirectional-context conditional language generation, or “infilling,” inspired by Frame Semantic theory (Fillmore, 1976). Guidance is provided through two approaches: (1) model fine-tuning, conditioning directly on observed symbolic frames, and (2) a novel extension to disjunctive lexically constrained decoding that leverages frame semantic lexical units. Automatic and human evaluations confirm that frame-guided generation allows for explicit manipulation of intended infill semantics, with minimal loss in distinguishability from human-generated text. Our methods flexibly apply to a variety of use scenarios, and we provide an interactive web demo
more »
« less
- Award ID(s):
- 2020969
- PAR ID:
- 10302086
- Date Published:
- Journal Name:
- Proceedings of the 10th Conference on Lexical and Computational Semantics
- Page Range / eLocation ID:
- 129-142
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper introduces GLAMR, an Abstract Meaning Representation (AMR) interpretation of Generative Lexicon (GL) semantic components. It includes a structured subeventual interpretation of linguistic predicates, and encoding of the opposition structure of property changes of event arguments. Both of these features are recently encoded in VerbNet (VN), and form the scaffolding for the semantic form associated with VN frame files. We develop a new syntax, concepts, and roles for subevent structure based on VN for connecting subevents to atomic predicates. Our proposed extension is compatible with current AMR specification. We also present an approach to automatically augment AMR graphs by inserting subevent structure of the predicates and identifying the subevent arguments from the semantic roles. A pilot annotation of GLAMR graphs of 65 documents (486 sentences), based on procedural texts as a source, is presented as a public dataset. The annotation includes subevents, argument property change, and document-level anaphoric links. Finally, we provide baseline models for converting text to GLAMR and vice versa, along with the application of GLAMR for generating enriched paraphrases with details on subevent transformation and arguments that are not present in the surface form of the texts.more » « less
-
This paper introduces GLAMR, an Abstract Meaning Representation (AMR) interpretation of Generative Lexicon (GL) semantic components. It includes a structured subeventual interpretation of linguistic predicates, and encoding of the opposition structure of property changes of event arguments. Both of these features are recently encoded in VerbNet (VN), and form the scaffolding for the semantic form associated with VN frame files. We develop a new syntax, concepts, and roles for subevent structure based on VN for connecting subevents to atomic predicates. Our proposed extension is compatible with current AMR specification. We also present an approach to automatically augment AMR graphs by inserting subevent structure of the predicates and identifying the subevent arguments from the semantic roles. A pilot annotation of GLAMR graphs of 65 documents (486 sentences), based on procedural texts as a source, is presented as a public dataset. The annotation includes subevents, argument property change, and document-level anaphoric links. Finally, we provide baseline models for converting text to GLAMR and vice versa, along with the application of GLAMR for generating enriched paraphrases with details on subevent transformation and arguments that are not present in the surface form of the texts.more » « less
-
We present Accel, a novel semantic video segmentation system that achieves high accuracy at low inference cost by combining the predictions of two network branches: (1) a reference branch that extracts high-detail features on a reference keyframe, and warps these features forward using frame-to-frame optical flow estimates, and (2) an update branch that computes features of adjustable quality on the current frame, performing a temporal update at each video frame. The modularity of the update branch, where feature subnetworks of varying layer depth can be inserted (e.g. ResNet-18 to ResNet-101), enables operation over a new, state-of-the-art accuracy-throughput trade-off spectrum. Over this curve, Accel models achieve both higher accuracy and faster inference times than the closest comparable single-frame segmentation networks. In general, Accel significantly outperforms previous work on efficient semantic video segmentation, correcting warping-related error that compounds on datasets with complex dynamics. Accel is end-to-end trainable and highly modular: the reference network, the optical flow network, and the update network can each be selected independently, depending on application requirements, and then jointly fine-tuned. The result is a robust, general system for fast, high-accuracy semantic segmentation on videomore » « less
-
Chenyang Lu (Ed.)The design and analysis of multi-agent human cyber-physical systems in safety-critical or industry-critical domains calls for an adequate semantic foundation capable of exhaustively and rigorously describing all emergent effects in the joint dynamic behavior of the agents that are relevant to their safety and well-behavior. We present such a semantic foundation. This framework extends beyond previous approaches by extending the agent-local dynamic state beyond state components under direct control of the agent and belief about other agents (as previously suggested for understanding cooperative as well as rational behavior) to agent-local evidence and belief about the overall cooperative, competitive, or coopetitive game structure. We argue that this extension is necessary for rigorously analyzing systems of human cyber-physical systems because humans are known to employ cognitive replacement models of system dynamics that are both non-stationary and potentially incongruent. These replacement models induce visible and potentially harmful effects on their joint emergent behavior and the interaction with cyber-physical system components.more » « less
An official website of the United States government

