skip to main content


Title: Using Deep Learning to Nowcast the Spatial Coverage of Convection from Himawari-8 Satellite Data
Abstract

Predicting the timing and location of thunderstorms (“convection”) allows for preventive actions that can save both lives and property. We have applied U-nets, a deep-learning-based type of neural network, to forecast convection on a grid at lead times up to 120 min. The goal is to make skillful forecasts with only present and past satellite data as predictors. Specifically, predictors are multispectral brightness-temperature images from theHimawari-8satellite, while targets (ground truth) are provided by weather radars in Taiwan. U-nets are becoming popular in atmospheric science due to their advantages for gridded prediction. Furthermore, we use three novel approaches to advance U-nets in atmospheric science. First, we compare three architectures—vanilla, temporal, and U-net++—and find that vanilla U-nets are best for this task. Second, we train U-nets with the fractions skill score, which is spatially aware, as the loss function. Third, because we do not have adequate ground truth over the fullHimawari-8domain, we train the U-nets with small radar-centered patches, then apply trained U-nets to the full domain. Also, we find that the best predictions are given by U-nets trained with satellite data from multiple lag times, not only the present. We evaluate U-nets in detail—by time of day, month, and geographic location—and compare them to persistence models. The U-nets outperform persistence at lead times ≥ 60 min, and at all lead times the U-nets provide a more realistic climatology than persistence. Our code is available publicly.

 
more » « less
Award ID(s):
2019758
NSF-PAR ID:
10302440
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Monthly Weather Review
Volume:
149
Issue:
12
ISSN:
0027-0644
Page Range / eLocation ID:
p. 3897-3921
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Neural networks (NN) have become an important tool for prediction tasks—both regression and classification—in environmental science. Since many environmental-science problems involve life-or-death decisions and policy making, it is crucial to provide not only predictions but also an estimate of the uncertainty in the predictions. Until recently, very few tools were available to provide uncertainty quantification (UQ) for NN predictions. However, in recent years the computer-science field has developed numerous UQ approaches, and several research groups are exploring how to apply these approaches in environmental science. We provide an accessible introduction to six of these UQ approaches, then focus on tools for the next step, namely, to answer the question:Once we obtain an uncertainty estimate (using any approach), how do we know whether it is good or bad?To answer this question, we highlight four evaluation graphics and eight evaluation scores that are well suited for evaluating and comparing uncertainty estimates (NN based or otherwise) for environmental-science applications. We demonstrate the UQ approaches and UQ-evaluation methods for two real-world problems: 1) estimating vertical profiles of atmospheric dewpoint (a regression task) and 2) predicting convection over Taiwan based onHimawari-8satellite imagery (a classification task). We also provide Jupyter notebooks with Python code for implementing the UQ approaches and UQ-evaluation methods discussed herein. This article provides the environmental-science community with the knowledge and tools to start incorporating the large number of emerging UQ methods into their research.

    Significance Statement

    Neural networks are used for many environmental-science applications, some involving life-or-death decision-making. In recent years new methods have been developed to provide much-needed uncertainty estimates for NN predictions. We seek to accelerate the adoption of these methods in the environmental-science community with an accessible introduction to 1) methods for computing uncertainty estimates in NN predictions and 2) methods for evaluating such estimates.

     
    more » « less
  2. Abstract

    The prediction of large fluctuations in the ground magnetic field (dB/dt) is essential for preventing damage from Geomagnetically Induced Currents. Directly forecasting these fluctuations has proven difficult, but accurately determining the risk of extreme events can allow for the worst of the damage to be prevented. Here we trained Convolutional Neural Network models for eight mid‐latitude magnetometers to predict the probability thatdB/dtwill exceed the 99th percentile threshold 30–60 min in the future. Two model frameworks were compared, a model trained using solar wind data from the Advanced Composition Explorer (ACE) satellite, and another model trained on both ACE and SuperMAG ground magnetometer data. The models were compared to examine if the addition of current ground magnetometer data significantly improved the forecasts ofdB/dtin the future prediction window. A bootstrapping method was employed using a random split of the training and validation data to provide a measure of uncertainty in model predictions. The models were evaluated on the ground truth data during eight geomagnetic storms and a suite of evaluation metrics are presented. The models were also compared to a persistence model to ensure that the model using both datasets did not over‐rely ondB/dtvalues in making its predictions. Overall, we find that the models using both the solar wind and ground magnetometer data had better metric scores than the solar wind only and persistence models, and was able to capture more spatially localized variations in thedB/dtthreshold crossings.

     
    more » « less
  3. Abstract The Prediction of Rainfall Extremes Campaign In the Pacific (PRECIP) aims to improve our understanding of extreme rainfall processes in the East Asian summer monsoon. A convection-permitting ensemble-based data assimilation and forecast system (the PSU WRF-EnKF system) was run in real time in the summers of 2020–21 in advance of the 2022 field campaign, assimilating all-sky infrared (IR) radiances from the geostationary Himawari-8 and GOES-16 satellites, and providing 48-h ensemble forecasts every day for weather briefings and discussions. This is the first time that all-sky IR data assimilation has been performed in a real-time forecast system at a convection-permitting resolution for several seasons. Compared with retrospective forecasts that exclude all-sky IR radiances, rainfall predictions are statistically significantly improved out to at least 4–6 h for the real-time forecasts, which is comparable to the time scale of improvements gained from assimilating observations from the dense ground-based Doppler weather radars. The assimilation of all-sky IR radiances also reduced the forecast errors of large-scale environments and helped to maintain a more reasonable ensemble spread compared with the counterpart experiments that did not assimilate all-sky IR radiances. The results indicate strong potential for improving routine short-term quantitative precipitation forecasts using these high-spatiotemporal-resolution satellite observations in the future. Significance Statement During the summers of 2020/21, the PSU WRF-EnKF data assimilation and forecast system was run in real time in advance of the 2022 Prediction of Rainfall Extremes Campaign In the Pacific (PRECIP), assimilating all-sky (clear-sky and cloudy) infrared radiances from geostationary satellites into a numerical weather prediction model and providing ensemble forecasts. This study presents the first-of-its-kind systematic evaluation of the impacts of assimilating all-sky infrared radiances on short-term qualitative precipitation forecasts using multiyear, multiregion, real-time ensemble forecasts. Results suggest that rainfall forecasts are improved out to at least 4–6 h with the assimilation of all-sky infrared radiances, comparable to the influence of assimilating radar observations, with benefits in forecasting large-scale environments and representing atmospheric uncertainties as well. 
    more » « less
  4. Abstract

    The quantification of storm updrafts remains unavailable for operational forecasting despite their inherent importance to convection and its associated severe weather hazards. Updraft proxies, like overshooting top area from satellite images, have been linked to severe weather hazards but only relate to a limited portion of the total storm updraft. This study investigates if a machine learning model, namely, U-Nets, can skillfully retrieve maximum vertical velocity and its areal extent from three-dimensional gridded radar reflectivity alone. The machine learning model is trained using simulated radar reflectivity and vertical velocity from the National Severe Storm Laboratory’s convection permitting Warn-on-Forecast System (WoFS). A parametric regression technique using the sinh–arcsinh–normal distribution is adapted to run with U-Nets, allowing for both deterministic and probabilistic predictions of maximum vertical velocity. The best models after hyperparameter search provided less than 50% root mean squared error, a coefficient of determination greater than 0.65, and an intersection over union (IoU) of more than 0.45 on the independent test set composed of WoFS data. Beyond the WoFS analysis, a case study was conducted using real radar data and corresponding dual-Doppler analyses of vertical velocity within a supercell. The U-Net consistently underestimates the dual-Doppler updraft speed estimates by 50%. Meanwhile, the area of the 5 and 10 m s−1updraft cores shows an IoU of 0.25. While the above statistics are not exceptional, the machine learning model enables quick distillation of 3D radar data that is related to the maximum vertical velocity, which could be useful in assessing a storm’s severe potential.

    Significance Statement

    All convective storm hazards (tornadoes, hail, heavy rain, straight line winds) can be related to a storm’s updraft. Yet, there is no direct measurement of updraft speed or area available for forecasters to make their warning decisions from. This paper addresses the lack of observational data by providing a machine learning solution that skillfully estimates the maximum updraft speed within storms from only the radar reflectivity 3D structure. After further vetting the machine learning solutions on additional real-world examples, the estimated storm updrafts will hopefully provide forecasters with an added tool to help diagnose a storm’s hazard potential more accurately.

     
    more » « less
  5. Abstract

    Advancing our understanding of astrophysical turbulence is bottlenecked by the limited resolution of numerical simulations that may not fully sample scales in the inertial range. Machine-learning (ML) techniques have demonstrated promise in upscaling resolution in both image analysis and numerical simulations (i.e., superresolution). Here we employ and further develop a physics-constrained convolutional neural network ML model called “MeshFreeFlowNet” (MFFN) for superresolution studies of turbulent systems. The model is trained on both the simulation images and the evaluated partial differential equations (PDEs), making it sensitive to the underlying physics of a particular fluid system. We develop a framework for 2D turbulent Rayleigh–Bénard convection generated with theDedaluscode by modifying the MFFN architecture to include the full set of simulation PDEs and the boundary conditions. Our training set includes fully developed turbulence sampling Rayleigh numbers (Ra) ofRa= 106–1010. We evaluate the success of the learned simulations by comparing the power spectra of the directDedalussimulation to the predicted model output and compare both ground-truth and predicted power spectral inertial range scalings to theoretical predictions. We find that the updated network performs well at allRastudied here in recovering large-scale information, including the inertial range slopes. The superresolution prediction is overly dissipative at smaller scales than that of the inertial range in all cases, but the smaller scales are better recovered in more turbulent than laminar regimes. This is likely because more turbulent systems have a rich variety of structures at many length scales compared to laminar flows.

     
    more » « less