Secondary forest regrowth shapes community succession and biogeochemistry for decades, including in the Upper Great Lakes region. Vegetation models encapsulate our understanding of forest function, and whether models can reproduce multi‐decadal succession patterns is an indication of our ability to predict forest responses to future change. We test the ability of a vegetation model to simulate C cycling and community composition during 100 years of forest regrowth following stand‐replacing disturbance, asking (a) Which processes and parameters are most important to accurately model Upper Midwest forest succession? (b) What is the relative importance of model structure versus parameter values to these predictions? We ran ensembles of the Ecosystem Demography model v2.2 with different representations of processes important to competition for light. We compared the magnitude of structural and parameter uncertainty and assessed which sub‐model–parameter combinations best reproduced observed C fluxes and community composition. On average, our simulations underestimated observed net primary productivity (NPP) and leaf area index (LAI) after 100 years and predicted complete dominance by a single plant functional type (PFT). Out of 4,000 simulations, only nine fell within the observed range of both NPP and LAI, but these predicted unrealistically complete dominance by either early hardwood or pine PFTs. A different set of seven simulations were ecologically plausible but under‐predicted observed NPP and LAI. Parameter uncertainty was large; NPP and LAI ranged from ~0% to >200% of their mean value, and any PFT could become dominant. The two parameters that contributed most to uncertainty in predicted NPP were plant–soil water conductance and growth respiration, both unobservable empirical coefficients. We conclude that (a) parameter uncertainty is more important than structural uncertainty, at least for ED‐2.2 in Upper Midwest forests and (b) simulating both productivity and plant community composition accurately without physically unrealistic parameters remains challenging for demographic vegetation models.
- Award ID(s):
- 1942255
- NSF-PAR ID:
- 10302778
- Date Published:
- Journal Name:
- bioRxiv
- ISSN:
- 2692-8205
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
As the Arctic region moves into uncharted territory under a warming climate, it is important to refine the terrestrial biosphere models (TBMs) that help us understand and predict change. One fundamental uncertainty in TBMs relates to model parameters, configuration variables internal to the model whose value can be estimated from data. We incorporate a version of the Terrestrial Ecosystem Model (TEM) developed for arctic ecosystems into the Predictive Ecosystem Analyzer (PEcAn) framework. PEcAn treats model parameters as probability distributions, estimates parameters based on a synthesis of available field data, and then quantifies both model sensitivity and uncertainty to a given parameter or suite of parameters. We examined how variation in 21 parameters in the equation for gross primary production influenced model sensitivity and uncertainty in terms of two carbon fluxes (net primary productivity and heterotrophic respiration) and two carbon (C) pools (vegetation C and soil C). We set up different parameterizations of TEM across a range of tundra types (tussock tundra, heath tundra, wet sedge tundra, and shrub tundra) in northern Alaska, along a latitudinal transect extending from the coastal plain near Utqiaġvik to the southern foothills of the Brooks Range, to the Seward Peninsula. TEM was most sensitive to parameters related to the temperature regulation of photosynthesis. Model uncertainty was mostly due to parameters related to leaf area, temperature regulation of photosynthesis, and the stomatal responses to ambient light conditions. Our analysis also showed that sensitivity and uncertainty to a given parameter varied spatially. At some sites, model sensitivity and uncertainty tended to be connected to a wider range of parameters, underlining the importance of assessing tundra community processes across environmental gradients or geographic locations. Generally, across sites, the flux of net primary productivity (NPP) and pool of vegetation C had about equal uncertainty, while heterotrophic respiration had higher uncertainty than the pool of soil C. Our study illustrates the complexity inherent in evaluating parameter uncertainty across highly heterogeneous arctic tundra plant communities. It also provides a framework for iteratively testing how newly collected field data related to key parameters may result in more effective forecasting of Arctic change.more » « less
-
Turbulence is a major source of momentum, heat, moisture, and aerosol transport in the atmosphere. Hence, it is crucial to understand and accurately characterize turbulence mechanisms in atmospheric flows. Many complex factors in the atmosphere influence the turbulence structures including stratification and background shear. However, our understanding of the interacting effects of these factors on coherent turbulence structure evolutions is still limited. In this talk, we aim to bridge this knowledge gap by using mode decomposition techniques and a wide range of large-eddy simulation (LES) data. By developing a data-driven technique, we will characterize unique features of atmospheric boundary layer (ABL) turbulence under different forcing scenarios. We will present 3D LES wind speed snapshots of different ABL flows that will be used as dynamic mode decomposition (DMD) input data. Then, the obtained modes and eigenvalues will be employed to gain insights into coherent turbulence structures in ABLs. We will explain the physical meaning of dominant modes and how each mode relates to the physical cause of turbulence structures. The dominant modes, which are selected based on the mode amplitude, contain the most important spatial and temporal characteristics of the flow. We will evaluate the accuracy of the performance of this method by reconstructing the flow field with only a small number of modes, and then calculate the mean average error between the real flow and the reconstructed flow fields. We will present different data frequencies, wind speeds, and surface heat fluxes. This allows us to elucidate the modes and determine the conditions in which the mode decomposition provides more accurate results for the ABL flows. Our findings can be used to identify the major causes of turbulence in real atmospheric flows and could provide a deeper insight into the dynamics of turbulence in ABLs. Our results will also be useful for developing reduced-order models that can rapidly predict the turbulent ABL flow fields.more » « less
-
Abstract Characterizing aquifer properties and their associated uncertainty remains a fundamental challenge in hydrogeology. Recent studies demonstrate the use of oscillatory flow interference testing to characterize effective aquifer flow properties. These characterization efforts relate the relative amplitude and phase of an observation signal with a single frequency component to aquifer diffusivity and transmissivity. Here, we present a generalized workflow that relates extracted Fourier coefficients for observation signals with single and multiple frequency components to aquifer flow properties and their associated uncertainty. Through synthetic analytical modeling we show that multi‐frequency oscillatory flow interference testing adds information that improves inversion performance and decreases parameter uncertainty. We show increased observation signal length, sampling frequency, and pressure sensor accuracy all produce decreased parameter uncertainty. This work represents the first attempt we are aware of to quantify effective aquifer parameters and their associated uncertainty using multi‐frequency oscillatory flow interference testing.
-
Abstract. The terrestrial carbon cycle plays a critical role in modulating the interactions of climate with the Earth system, but different models often make vastly different predictions of its behavior. Efforts to reduce model uncertainty have commonly focused on model structure, namely by introducing additional processes and increasing structural complexity. However, the extent to which increased structural complexity can directly improve predictive skill is unclear. While adding processes may improve realism, the resulting models are often encumbered by a greater number of poorly determined or over-generalized parameters. To guide efficient model development, here we map the theoretical relationship between model complexity and predictive skill. To do so, we developed 16 structurally distinct carbon cycle models spanning an axis of complexity and incorporated them into a model–data fusion system. We calibrated each model at six globally distributed eddy covariance sites with long observation time series and under 42 data scenarios that resulted in different degrees of parameter uncertainty. For each combination of site, data scenario, and model, we then predicted net ecosystem exchange (NEE) and leaf area index (LAI) for validation against independent local site data. Though the maximum model complexity we evaluated is lower than most traditional terrestrial biosphere models, the complexity range we explored provides universal insight into the inter-relationship between structural uncertainty, parametric uncertainty, and model forecast skill. Specifically, increased complexity only improves forecast skill if parameters are adequately informed (e.g., when NEE observations are used for calibration). Otherwise, increased complexity can degrade skill and an intermediate-complexity model is optimal. This finding remains consistent regardless of whether NEE or LAI is predicted. Our COMPLexity EXperiment (COMPLEX) highlights the importance of robust observation-based parameterization for land surface modeling and suggests that data characterizing net carbon fluxes will be key to improving decadal predictions of high-dimensional terrestrial biosphere models.more » « less