skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fast state tomography with optimal error bounds
Abstract Projected least squares is an intuitive and numerically cheap technique for quantum state tomography: compute the least-squares estimator and project it onto the space of states. The main result of this paper equips this point estimator with rigorous, non-asymptotic convergence guarantees expressed in terms of the trace distance. The estimator’ssample complexityis comparable to the strongest convergence guarantees available in the literature and—in the case of the uniform POVM—saturates fundamental lower bounds. Numerical simulations support these competitive features.  more » « less
Award ID(s):
1952777
PAR ID:
10303514
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Physics A: Mathematical and Theoretical
Volume:
53
Issue:
20
ISSN:
1751-8113
Page Range / eLocation ID:
Article No. 204001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sequential data collection has emerged as a widely adopted technique for enhancing the efficiency of data gathering processes. Despite its advantages, such data collection mechanism often introduces complexities to the statistical inference procedure. For instance, the ordinary least squares (OLS) estimator in an adaptive linear regression model can exhibit non-normal asymptotic behavior, posing challenges for accurate inference and interpretation. In this paper, we propose a general method for constructing debiased estimator which remedies this issue. It makes use of the idea of adaptive linear estimating equations, and we establish theoretical guarantees of asymptotic normality, supplemented by discussions on achieving near-optimal asymptotic variance. A salient feature of our estimator is that in the context of multi-armed bandits, our estimator retains the non-asymptotic performance of the least squares estimator while obtaining asymptotic normality property. Consequently, this work helps connect two fruitful paradigms of adaptive inference: a) non-asymptotic inference using concentration inequalities and b) asymptotic inference via asymptotic normality. 
    more » « less
  2. Summary We present a certainty equivalence‐based adaptive boundary control scheme with a regulation‐triggered batch least‐squares identifier, for a heterodirectional transport partial differential equation‐ordinary differential equation (PDE‐ODE) system where the transport speeds of both transport PDEs are unknown. We use a nominal controller which is fed piecewise‐constant parameter estimates from an event‐triggered parameter update law that applies a least‐squares estimator to data “batches” collected over time intervals between the triggers. A parameter update is triggered by an observed growth in the norm of the PDE state. The proposed triggering‐based adaptive control guarantees: (1) the absence of a Zeno phenomenon; (2) parameter estimates are convergent to the true values in finite time (from most initial conditions); (3) exponential regulation of the plant states to zero. The effectiveness of the proposed design is verified by a numerical example. 
    more » « less
  3. Sequential data collection has emerged as a widely adopted technique for enhancing the efficiency of data gathering processes. Despite its advantages, such data collection mechanism often introduces complexities to the statistical inference procedure. For instance, the ordinary least squares (OLS) estimator in an adaptive linear regression model can exhibit non-normal asymptotic behavior, posing challenges for accurate inference and interpretation. In this paper, we propose a general method for constructing debiased estimator which remedies this issue. It makes use of the idea of adaptive linear estimating equations, and we establish theoretical guarantees of asymptotic normality, supplemented by discussions on achieving near-optimal asymptotic variance. A salient feature of our estimator is that in the context of multi-armed bandits, our estimator retains the non-asymptotic performance of the least square estimator while obtaining asymptotic normality property. Consequently, this work helps connect two fruitful paradigms of adaptive inference: a) non-asymptotic inference using concentration inequalities and b) asymptotic inference via asymptotic normality. 
    more » « less
  4. Abstract We consider the nonparametric estimation of an S-shaped regression function. The least squares estimator provides a very natural, tuning-free approach, but results in a non-convex optimization problem, since the inflection point is unknown. We show that the estimator may nevertheless be regarded as a projection onto a finite union of convex cones, which allows us to propose a mixed primal-dual bases algorithm for its efficient, sequential computation. After developing a projection framework that demonstrates the consistency and robustness to misspecification of the estimator, our main theoretical results provide sharp oracle inequalities that yield worst-case and adaptive risk bounds for the estimation of the regression function, as well as a rate of convergence for the estimation of the inflection point. These results reveal not only that the estimator achieves the minimax optimal rate of convergence for both the estimation of the regression function and its inflection point (up to a logarithmic factor in the latter case), but also that it is able to achieve an almost-parametric rate when the true regression function is piecewise affine with not too many affine pieces. Simulations and a real data application to air pollution modelling also confirm the desirable finite-sample properties of the estimator, and our algorithm is implemented in the R package Sshaped. 
    more » « less
  5. Centring is a commonly used technique in linear regression analysis. With centred data on both the responses and covariates, the ordinary least squares estimator of the slope parameter can be calculated from a model without the intercept. If a subsample is selected from a centred full data, the subsample is typically uncentred. In this case, is it still appropriate to fit a model without the intercept? The answer is yes, and we show that the least squares estimator on the slope parameter obtained from a model without the intercept is unbiased and it has a smaller variance covariance matrix in the Loewner order than that obtained from a model with the intercept. We further show that for noninformative weighted subsampling when a weighted least squares estimator is used, using the full data weighted means to relocate the subsample improves the estimation efficiency. 
    more » « less