skip to main content


Title: The Mitochondrial Contribution to Animal Performance, Adaptation, and Life-History Variation
Abstract Animals display tremendous variation in their rates of growth, reproductive output, and longevity. While the physiological and molecular mechanisms that underlie this variation remain poorly understood, the performance of the mitochondrion has emerged as a key player. Mitochondria not only impact the performance of eukaryotes via their capacity to produce ATP, but they also play a role in producing heat and reactive oxygen species and function as a major signaling hub for the cell. The papers included in this special issue emerged from a symposium titled “Inside the Black Box: The Mitochondrial Basis of Life-history Variation and Animal Performance.” Based on studies of diverse animal taxa, three distinct themes emerged from these papers. (1) When linking mitochondrial function to components of fitness, it is crucial that mitochondrial assays are performed in conditions as close as the intracellular conditions experienced by the mitochondria in vivo. (2) Functional plasticity allows mitochondria to retain their performance, as well as that of their host, over a range of exogenous conditions, and selection on mitochondrial and nuclear-derived proteins can optimize the match between the environment and the bioenergetic capacity of the mitochondrion. Finally, (3) studies of wild and wild-derived animals suggest that mitochondria play a central role in animal performance and life history strategy. Taken as a whole, we hope that these papers will foster discussion and inspire new hypotheses and innovations that will further our understanding of the mitochondrial processes that underlie variation in life history traits and animal performance.  more » « less
Award ID(s):
1738378 1453784
NSF-PAR ID:
10303638
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Date Published:
Journal Name:
Integrative and Comparative Biology
Volume:
58
Issue:
3
ISSN:
1540-7063
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Oxidative damage is predicted to be a mediator of trade-offs between current reproduction and future reproduction or survival, but most studies fail to support such predictions. We suggest that two factors underlie the equivocal nature of these findings: (1) investigators typically assume a negative linear relationship between current reproduction and future reproduction or survival, even though this is not consistently shown by empirical studies; and (2) studies often fail to target mechanisms that could link interactions between sequential life-history events. Here, we review common patterns of reproduction, focusing on the relationships between reproductive performance, survival and parity in females. Observations in a range of species show that performance between sequential reproductive events can decline, remain consistent or increase. We describe likely bioenergetic consequences of reproduction that could underlie these changes in fitness, including mechanisms that could be responsible for negative effects being ephemeral, persistent or delayed. Finally, we make recommendations for designing future studies. We encourage investigators to carefully consider additional or alternative measures of bioenergetic function in studies of life-history trade-offs. Such measures include reactive oxygen species production, oxidative repair, mitochondrial biogenesis, cell proliferation, mitochondrial DNA mutation and replication error and, importantly, a measure of the respiratory function to determine whether measured differences in bioenergetic state are associated with a change in the energetic capacity of tissues that could feasibly affect future reproduction or lifespan. More careful consideration of the life-history context and bioenergetic variables will improve our understanding of the mechanisms that underlie the life-history patterns of animals. 
    more » « less
  2. ABSTRACT

    Considerable progress has been made in understanding the physiological basis for variation in the life‐history patterns of animals, particularly with regard to the roles of oxidative stress and hormonal regulation. However, an underappreciated and understudied area that could play a role in mediating inter‐ and intraspecific variation of life history is endoplasmic reticulum (ER) stress, and the resulting unfolded protein response (UPRER). ER stress response and the UPRERmaintain proteostasis in cells by reducing the intracellular load of secretory proteins and enhancing protein folding capacity or initiating apoptosis in cells that cannot recover. Proper modulation of the ER stress response and execution of the UPRERallow animals to respond to intracellular and extracellular stressors and adapt to constantly changing environments. ER stress responses are heritable and there is considerable individual variation in UPRERphenotype in animals, suggesting that ER stress and UPRERphenotype can be subjected to natural selection. The variation in UPRERphenotype presumably reflects the way animals respond to ER stress and environmental challenges. Most of what we know about ER stress and the UPRERin animals has either come from biomedical studies using cell culture or from experiments involving conventional laboratory or agriculturally important models that exhibit limited genetic diversity. Furthermore, these studies involve the assessment of experimentally induced qualitative changes in gene expression as opposed to the quantitative variations that occur in naturally existing populations. Almost all of these studies were conducted in controlled settings that are often quite different from the conditions animals experience in nature. Herein, we review studies that investigated ER stress and the UPRERin relation to key life‐history traits including growth and development, reproduction, bioenergetics and physical performance, and ageing and senescence. We then ask if these studies can inform us about the role of ER stress and the UPRERin mediating the aforementioned life‐history traits in free‐living animals. We propose that there is a need to conduct experiments pertaining to ER stress and the UPRERin ecologically relevant settings, to characterize variation in ER stress and the UPRERin free‐living animals, and to relate the observed variation to key life‐history traits. We urge others to integrate multiple physiological systems and investigate how interactions between ER stress and oxidative stress shape life‐history trade‐offs in free‐living animals.

     
    more » « less
  3. Abstract

    Longevity plays a key role in the fitness of organisms, so understanding the processes that underlie variance in senescence has long been a focus of ecologists and evolutionary biologists. For decades, the performance and ultimate decline of mitochondria have been implicated in the demise of somatic tissue, but exactly why mitochondrial function declines as individual’s age has remained elusive. A possible source of decline that has been of intense debate is mutations to the mitochondrial DNA. There are two primary sources of such mutations: oxidative damage, which is widely discussed by ecologists interested in aging, and mitochondrial replication error, which is less familiar to most ecologists. The goal of this review is to introduce ecologists and evolutionary biologists to the concept of mitochondrial replication error and to review the current status of research on the relative importance of replication error in senescence. We conclude by detailing some of the gaps in our knowledge that currently make it difficult to deduce the relative importance of replication error in wild populations and encourage organismal biologists to consider this variable both when interpreting their results and as viable measure to include in their studies.

     
    more » « less
  4. Abstract

    Embryos of the annual killifishAustrofundulus limnaeusare the most anoxia-tolerant vertebrate. Annual killifish inhabit ephemeral ponds, producing drought and anoxia-tolerant embryos, which allows the species to persist generation after generation. Anoxia tolerance and physiology vary by developmental stage, creating a unique opportunity for comparative study within the species. A recent study of small ncRNA expression inA.limnaeusembryos in response to anoxia and aerobic recovery revealed small ncRNAs with expression patterns that suggest a role in supporting anoxia tolerance. MitosRNAs, small ncRNAs derived from the mitochondrial genome, emerged as an interesting group of these sequences. MitosRNAs derived from mitochondrial tRNAs were differentially expressed in developing embryos and isolated cells exhibiting extreme anoxia tolerance. In this study we focus on expression of mitosRNAs derived from tRNA-cysteine, and their subcellular and organismal localization in order to consider possible function. These tRNA-cys mitosRNAs appear enriched in the mitochondria, particularly near the nucleus, and also appear to be present in the cytoplasm. We provide evidence that mitosRNAs are generated in the mitochondria in response to anoxia, though the precise mechanism of biosynthesis remains unclear. MitosRNAs derived from tRNA-cys localize to numerous tissues, and increase in the anterior brain during anoxia. We hypothesize that these RNAs may play a role in regulating gene expression that supports extreme anoxia tolerance.

     
    more » « less
  5. ABSTRACT

    A key to understanding life's great diversity is discerning how competing organisms divide limiting resources to coexist in diverse communities. While temporal resource partitioning has long been hypothesized to reduce the negative effects of interspecific competition, empirical evidence suggests that time may not often be an axis along which animal species routinely subdivide resources. Here, we present evidence to the contrary in the world's most biodiverse group of animals: insect parasites (parasitoids). Specifically, we conducted a meta‐analysis of 64 studies from 41 publications to determine if temporal resource partitioningviavariation in the timing of a key life‐history trait, egg deposition (oviposition), mitigates interspecific competition between species pairs sharing the same insect host. When competing species were manipulated to oviposit at (or near) the same time in or on a single host in the laboratory, competition was common, and one species was typically inherently superior (i.e. survived to adulthood a greater proportion of the time). In most cases, however, the inferior competitor could gain a survivorship advantage by ovipositing earlier (or in a smaller number of cases later) into shared hosts. Moreover, this positive (or in a few cases negative) priority advantage gained by the inferior competitor increased as the interval between oviposition times became greater. The results from manipulative experiments were also correlated with patterns of life‐history timing and demography in nature: the more inherently competitively inferior a species was in the laboratory, the greater the interval between oviposition times of taxa in co‐occurring populations. Additionally, the larger the interval between oviposition times of competing taxa, the more abundant the inferior species was in populations where competitors were known to coexist. Overall, our findings suggest that temporal resource partitioningviavariation in oviposition timing may help to facilitate species coexistence and structures diverse insect communities by altering demographic measures of species success. We argue that the lack of evidence for a more prominent role of temporal resource partitioning in promoting species coexistence may reflect taxonomic differences, with a bias towards larger‐sized animals. For smaller species like parasitic insects that are specialized to attack one or a group of closely related hosts, have short adult lifespans and discrete generation times, compete directly for limited resources in small, closed arenas and have life histories constrained by host phenology, temporal resource subdivisionviavariation in life history may play a critical role in allowing species to coexist by alleviating the negative effects of interspecific competition.

     
    more » « less