This work proposes an Adaptive Fuzzy Prediction (AFP) method for the attenuation time series in Commercial Microwave links (CMLs). Time-series forecasting models regularly rely on the assumption that the entire data set follows the same Data Generating Process (DGP). However, the signals in wireless microwave links are severely affected by the varying weather conditions in the channel. Consequently, the attenuation time series might change its characteristics significantly at different periods. We suggest an adaptive framework to better employ the training data by grouping sequences with related temporal patterns to consider the non-stationary nature of the signals. The focus in this work is two-folded. The first is to explore the integration of static data of the CMLs as exogenous variables for the attenuation time series models to adopt diverse link characteristics. This extension allows to include various attenuation datasets obtained from additional CMLs in the training process and dramatically increasing available training data. The second is to develop an adaptive framework for short-term attenuation forecasting by employing an unsupervised fuzzy clustering procedure and supervised learning models. We empirically analyzed our framework for model and data-driven approaches with Recurrent Neural Network (RNN) and Autoregressive Integrated Moving Average (ARIMA) variations. We evaluate the proposed extensions on real-world measurements collected from 4G backhaul networks, considering dataset availability and the accuracy for 60 seconds prediction. We show that our framework can significantly improve conventional models’ accuracy and that incorporating data from various CMLs is essential to the AFP framework. The proposed methods have been shown to enhance the forecasting model’s performance by 30 − 40%, depending on the specific model and the data availability.
more »
« less
Reconstructing irreducible links in temporal networks: which tool to choose depends on the network size
Abstract Filtering information in complex networks entails the process of removing interactions explained by a proper null hypothesis and retaining the remaining interactions, which form the backbone network. The reconstructed backbone network depends upon the accuracy and reliability of the available tools, which, in turn, are affected by the specific features of the available dataset. Here, we examine the performance of three approaches for the discovery of backbone networks, in the presence of heterogeneous, time-varying node properties. In addition to the recently proposed evolving activity driven model, we extend two existing approaches (the disparity filter and the temporal fitness model) to tackle time-varying phenomena. Our analysis focuses on the influence of the network size, which was previously shown to be a determining factor for the performance of the evolving activity driven model. Through mathematical and numerical analysis, we propose general guidelines for the use of these three approaches based on the available dataset. For small networks, the evolving temporal fitness model offers a more reasonable trade-off between the number of links assigned to the backbone network and the accuracy of their inference. The main limitation of this methodology lies in its computational cost, which becomes excessively high for large networks. In this case, the evolving activity driven model could be a valid substitute to the evolving temporal fitness model. If one seeks to minimize the number of links inaccurately included in the backbone network at the risk of dismissing many links that could belong to it, then the temporal disparity filter would be the approach-of-choice. Overall, our contribution expands the toolbox of network discovery in the technical literature and should help users in choosing the right network discovery instrument, depending on the problem considered.
more »
« less
- Award ID(s):
- 1561134
- PAR ID:
- 10303662
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Journal of Physics: Complexity
- Volume:
- 1
- Issue:
- 1
- ISSN:
- 2632-072X
- Format(s):
- Medium: X Size: Article No. 015001
- Size(s):
- Article No. 015001
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This work proposes an Adaptive Fuzzy Prediction (AFP) method for the attenuation time series in Commercial Microwave links (CMLs). Time-series forecasting models regularly rely on the assumption that the entire data set follows the same Data Generating Process (DGP). However, the signals in wireless microwave links are severely affected by the varying weather conditions in the channel. Consequently, the attenuation time series might change its characteristics significantly at different periods. We suggest an adaptive framework to better employ the training data by grouping sequences with related temporal patterns to consider the non-stationary nature of the signals. The focus in this work is two-folded. The first is to explore the integration of static data of the CMLs as exogenous variables for the attenuation time series models to adopt diverse link characteristics. This extension allows to include various attenuation datasets obtained from additional CMLs in the training process and dramatically increasing available training data. The second is to develop an adaptive framework for short-term attenuation forecasting by employing an unsupervised fuzzy clustering procedure and supervised learning models. We empirically analyzed our framework for model and data-driven approaches with Recurrent Neural Network (RNN) and Autoregressive Integrated Moving Average (ARIMA) variations. We evaluate the proposed extensions on real-world measurements collected from 4G backhaul networks, considering dataset availability and the accuracy for 60 seconds prediction. We show that our framework can significantly improve conventional models’ accuracy and that incorporating data from various CMLs is essential to the AFP framework. The proposed methods have been shown to enhance the forecasting model’s performance by 30 − 40%, depending on the specific model and the data availability.more » « less
-
Abstract Dynamic community detection provides a coherent description of network clusters over time, allowing one to track the growth and death of communities as the network evolves. However, modularity maximization, a popular method for performing multilayer community detection, requires the specification of an appropriate null network as well as resolution and interlayer coupling parameters. Importantly, the ability of the algorithm to accurately detect community evolution is dependent on the choice of these parameters. In functional temporal networks, where evolving communities reflect changing functional relationships between network nodes, it is especially important that the detected communities reflect any state changes of the system. Here, we present analytical work suggesting that a uniform null network provides improved sensitivity to the detection of small evolving communities in temporal networks with positive edge weights bounded above by 1, such as certain types of correlation networks. We then propose a method for increasing the sensitivity of modularity maximization to state changes in nodal dynamics by modelling self-identity links between layers based on the self-similarity of the network nodes between layers. This method is more appropriate for functional temporal networks from both a modelling and mathematical perspective, as it incorporates the dynamic nature of network nodes. We motivate our method based on applications in neuroscience where network nodes represent neurons and functional edges represent similarity of firing patterns in time. We show that in simulated data sets of neuronal spike trains, updating interlayer links based on the firing properties of the neurons provides superior community detection of evolving network structure when groups of neurons change their firing properties over time. Finally, we apply our method to experimental calcium imaging data that monitors the spiking activity of hundreds of neurons to track the evolution of neuronal communities during a state change from the awake to anaesthetized state.more » « less
-
Using a toolbox of Internet cartography methods, and new ways of applying them, we have undertaken a comprehensive active measurement-driven study of the topology of U.S. regional access ISPs. We used state-of-the-art approaches in various combinations to accommodate the geographic scope, scale, and architectural richness of U.S. regional access ISPs. In addition to vantage points from research platforms, we used public WiFi hotspots and public transit of mobile devices to acquire the visibility needed to thoroughly map access networks across regions. We observed many different approaches to aggregation and redundancy, across links, nodes, buildings, and at different levels of the hierarchy. One result is substantial disparity in latency from some Edge COs to their backbone COs, with implications for end users of cloud services. Our methods and results can inform future analysis of critical infrastructure, including resilience to disasters, persistence of the digital divide, and challenges for the future of 5G and edge computing.more » « less
-
Research on plant-pollinator interactions requires a diversity of perspectives and approaches, and documenting changing pollinator-plant interactions due to declining insect diversity and climate change is especially challenging. Natural history collections are increasingly important for such research and can provide ecological information across broad spatial and temporal scales. Here, we describe novel approaches that integrate museum specimens from insect and plant collections with field observations to quantify pollen networks over large spatial and temporal gradients. We present methodological strategies for evaluating insect-pollen network parameters based on pollen collected from museum insect specimens. These methods provide insight into spatial and temporal variation in pollen-insect interactions and complement other approaches to studying pollination, such as pollinator observation networks and flower enclosure experiments. We present example data from butterfly pollen networks over the past century in the Great Basin Desert and Sierra Nevada Mountains, United States. Complementary to these approaches, we describe rapid pollen identification methods that can increase speed and accuracy of taxonomic determinations, using pollen grains collected from herbarium specimens. As an example, we describe a convolutional neural network (CNN) to automate identification of pollen. We extracted images of pollen grains from 21 common species from herbarium specimens at the University of Nevada Reno (RENO). The CNN model achieved exceptional accuracy of identification, with a correct classification rate of 98.8%. These and similar approaches can transform the way we estimate pollination network parameters and greatly change inferences from existing networks, which have exploded over the past few decades. These techniques also allow us to address critical ecological questions related to mutualistic networks, community ecology, and conservation biology. Museum collections remain a bountiful source of data for biodiversity science and understanding global change.more » « less
An official website of the United States government
