skip to main content


Title: Effect of curvature and placement of donor and acceptor units in cycloparaphenylenes: a computational study
Cycloparaphenylenes have promise as novel fluorescent materials. However, shifting their fluorescence beyond 510 nm is difficult. Herein, we computationally explore the effect of incorporating electron accepting and electron donating units on CPP photophysical properties at the CAM-B3LYP/6-311G** level. We demonstrate that incorporation of donor and acceptor units may shift the CPP fluorescence as far as 1193 nm. This computational work directs the synthesis of bright red-emitting CPPs. Furthermore, the nanohoop architecture allows for interrogation of strain effects on common conjugated polymer donor and acceptor units. Strain results in a bathochromic shift versus linear variants, demonstrating the value of using strain to push the limits of low band gap materials.  more » « less
Award ID(s):
1800586
NSF-PAR ID:
10303750
Author(s) / Creator(s):
 ;  ;  ;  
Date Published:
Journal Name:
Chemical Science
Volume:
11
Issue:
44
ISSN:
2041-6520
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Understanding the structural parameters that determine the extension of π-conjugation in 2-dimensions is key for controlling the optical, photophysical, and electronic properties of 2D-π-conjugated materials. In this article, three non-slanted H-mers including a donor–acceptor H-mer (H-mer-3) with an increase in dihedral angle (twist) between the strands and rungs are synthesized and studied. These non-slanted H-mers represent the repeat units of 2D-π-conjugated materials. H-mer-3, containing donor-strands and an acceptor-rung, is an unexplored donor–acceptor architecture in both slanted and non-slanted H-mers. The H-mers displayed both acid and base dependent optical properties. While the rungs have a little impact on the H-mer absorption spectra they play a key role in the emission and fluorescence lifetime. H-mer-3 ( i.e. , donor–acceptor H-mer) shows a higher Stokes shift and fluorescence lifetime than the other two H-mers. The twist and the presence of an electron deficient rung in H-mer-3 facilitated an intramolecular charge transfer in the excited state from the strands to the electron deficient rung, and therefore control over the H-mer emission properties. The lack of insulating pendant chains, reduced π–π interactions in thinfilms, and longer fluorescence lifetimes make these H-mers interesting candidates for various electronic and optoelectronic applications. 
    more » « less
  2. Abstract

    Cycloparaphenylenes (CPPs) are the smallest possible armchair carbon nanotubes, the properties of which strongly depend on their ring size. They can be further tuned by either peripheral functionalization or by replacing phenylene rings for other aromatic units. Here we show how four novel donor–acceptor chromophores were obtained by incorporating fluorenone or 2‐(9H‐fluoren‐9‐ylidene)malononitrile into the loops of two differently sized CPPs. Synthetically, we managed to perform late‐stage functionalization of the fluorenone‐based rings by high‐yielding Knoevenagel condensations. The structures were confirmed by X‐ray crystallographic analyses, which revealed that replacing a phenylene for a fused‐ring‐system acceptor introduces additional strain. The donor–acceptor characters of the CPPs were supported by absorption and fluorescence spectroscopic studies, electrochemical studies (displaying the CPPs as multi‐redox systems undergoing reversible or quasi‐reversible redox events), as well as by computations. The oligophenylene parts were found to comprise the electron donor units of the macrocycles and the fluorenone parts the acceptor units.

     
    more » « less
  3. null (Ed.)
    Reported here is the design and synthesis of among the first pyridine terminated acceptor–donor–acceptor–donor–acceptor (A–D–A–D–A) based π-conjugated oligomers, EH_DPP_2T_Pyr ( 1 ), EH_II_2T_Pyr ( 2 ), and EH_II_1T_Pyr ( 3 ). The molecules incorporate thiophenes as electron donors, isoindigo/diketopyrrolopyrrole as electron acceptors, and are capped with pyridine, a weak electron acceptor, on both ends. All target oligomers show attractive photophysical properties, broad absorption in the visible region ( λ max = 636 nm, 575 nm, and 555 nm, for 1 , 2 , and 3 , respectively) and emission which extends to the IR region (emission λ max = 734 nm and 724 for 1 and 2 , respectively). Given the pyridine nitrogens, the optoelectronic properties of the compounds can be further tuned by protonation/metalation. All compounds show a bathochromic shift in visible absorption and fluorescence quenching upon addition of trifluoroacetic acid (TFA). Similar phenomena are observed upon addition of metals with a particularly strong response to Cu 2+ and Pd 2+ as indicated by Stern–Volmer analysis ( e.g. , for Pd 2+ ; K sv = 7.2 × 10 4 M −1 ( λ = 673 nm), 8.5 × 10 4 M −1 ( λ = 500 nm), and 1.1 × 10 5 ( λ = 425 nm) for 1 , 2 , and 3 , respectively). The selective association of the molecules to Cu 2+ and Pd 2+ is further evidenced by a color change easily observed by eye and under UV light, important for potential use in colorimetric sensing. 
    more » « less
  4. Abstract

    Molecular aggregation and crystallization during film coating play a crucial role in the realization of high‐performing organic photovoltaics. Strong intermolecular interactions and high solid‐state crystallinity are beneficial for charge transport. However, fast crystallization during thin‐film drying often limits the formation of the finely phase‐separated morphology required for efficient charge generation. Herein, the authors show that twisted acceptor‐donor‐acceptor (A‐D‐A) type compounds, containing an indacenodithiophene (IDT) electron‐rich core and two naphthalenediimide (NDI) electron‐poor units, leads to formation of mostly amorphous phases in the as‐cast film, which can be readily converted into more crystalline domains by means of thermal annealing. This design strategy solves the aforementioned conundrum, leading to an optimal morphology in terms of reduced donor/acceptor domain‐separation sizes (ca. 13 nm) and increased packing order. Solar cells based on these acceptors with a PBDB‐T polymer donor show a power conversion efficiency over 10% and stable morphology, which results from the combined properties of desirable excited‐state dynamics, high charge mobility, and optimal aggregation/crystallization characteristics. These results demonstrate that the twisted A‐D‐A motif featuring thermally‐induced crystallization behavior is indeed a promising alternative design approach toward more morphologically robust materials for efficient organic photovoltaics.

     
    more » « less
  5. Abstract

    High‐density data storage devices based on organic and polymer materials are currently restricted by two key issues, size limitations and uniformity of memory cells. Herein, one triblock polymer is synthesized by ring‐opening metathesis polymerization, where the polymer contains an electron‐donor‐acceptor (A1D) segment, an electron‐acceptor (A2) segment, and a hydrophilic segment, that shows ternary memory behavior in a conventional sandwich‐type device. The polymers that have monodisperse molecular weight dispersity self‐assemble into nanomicelles with a uniform size of 80 nm. Each nanomicelle is composed of an A1DA2‐type hydrophobic core stabilized with a hydrophilic shell. Nanobowls based on conductive oxide are prepared via the template method, wherein the nanomicelles are present as independent nanoscale memory units to produce an array of micelle matrices. Investigations of the resulting nanomemory device using conductive atomic force microscopy show that the micelles exhibit a predominant semiconductor memory behavior. Compared to traditional ternary devices with a memory unit size of ≈1 mm, this innovative fabrication method based on arrayed uniform nanomicelles downscales the size of storage cells to 80 nm. Furthermore, the described system leads to a greatly enhanced storage density (>108times over the same area), which opens up new paths for further development of ultrahigh‐density data storage devices.

     
    more » « less