skip to main content


Title: Skills geoscience employers look for in bachelors-level geoscientists
Preparing graduates to enter the workforce is a common goal of undergraduate geoscience degree programs. Determining what skills are necessary for new graduates to succeed in the workforce requires knowledge of the skills sought by employers of bachelors-level geoscientists. To investigate skills desired by employers, we systematically analyzed job advertisements retrieved from 4 search engines between May and November 2020. We used 15 search words derived from the 2018 Status of the Geoscience Workforce (AGI) report to select job advertisements that required or preferred a geoscience-based bachelor's degree. Additionally, we categorized each advertisement by industry sector based on definitions in the 2018 AGI report. Each job advertisement (n=1214) was coded to identify skills sought by the employer. An initial set of codes was based on skills identified by the Future of Undergraduate Geoscience Education project and additional emergent codes were identified during the coding process. We generated a final set of 34 codes, with definitions and examples, through an iterative coding process, checking for inter-rater reliability. Advertisements were not coded for geoscience content knowledge. The most common skills sought by employers were the ability to conduct field work, teamwork, work with computers, collect, process and interpret data, and communicate effectively, however, the desirability of skills varied across industry sectors. For example, teamwork skills were sought in 60% of mining sector advertisements but only 22% of oil and gas sector advertisements. Our results provide insight into the expectations of potential employers for recent graduates seeking a career in geoscience. Additionally, our results provide geoscience degree programs with critical information required to prepare undergraduates with the necessary skills to be successful in the current job market.  more » « less
Award ID(s):
1742215
NSF-PAR ID:
10303837
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Earth Educators' Rendezvous
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding the skills bachelor-level geoscientists need to enter the workforce is critical to their success. The goal of this study was to identify the workforce skills that are most requested from a broad range of geoscience employers. We collected 3668 job advertisements for bachelor-level geoscientists and used a case-insensitive, code-matching function in Matlab to determine the skills geoscience employers seek. Written communication (67%), field skills (63%), planning (53%), and driving (51%) were most frequently requested. Field skills and data collection were frequently found together in the ads. Written communication skills were common regardless of occupation. Quantitative skills were requested less frequently (23%) but were usually mentioned several times in the ads that did request them, signaling their importance for certain jobs. Some geoscience-specific skills were rarely found, such as temporal understanding (5%) and systems thinking (0%). We also subdivided field skills into individual tasks and ranked them by employer demand. Site assessments and evaluations, unspecified field tasks, and monitoring were the most frequently requested field skills. This study presents the geoscience community with a picture of the skills sought by employers of bachelor-level geoscientists and provides departments and programs with data they can use to assess their curricula for workforce preparation. 
    more » « less
  2. There are over 100,000 engineering graduates from undergraduate programs annually within the United States. Students graduating from these programs pursue a variety of jobs, with only a subset being engineering positions. Why might an engineering student, after investing considerable resources in their engineering education, select a nonengineering job? What are the specific factors at work for engineering graduates in selecting their first professional position? This study seeks to identify recently graduated engineering students’ motivations in job applications and job selection, particularly as these motives vary by academic and demographic backgrounds. The data for this study come from survey responses of 315 currently employed individuals who were within one year post-graduation from their undergraduate engineering program at one of 27 different institutions across the United States. A mixed methods approach was used to understand the factors influencing their career decisions based on their open- and closed- ended responses to related survey questions. First, using emergent coding, respondents’ self-reported, open-ended descriptions of their job search process that led them to accept the offer for their current employed position were categorized. Then, their open-ended responses were compared to a close-ended, ranking question of the same type, with items that were derived from a question in the National Survey of Recent College Graduates (sponsored by NSF’s Division of Science Resources Studies). Finally, respondents’ background characteristics (e.g., socioeconomic status) and undergraduate experiences (e.g., participation in an internship) were analyzed in relation to their job search and job selection processes. Our findings reinforce that job selection is a complex process that often can be a source of anxiety and stress to students. The motivating factors for deciding which jobs to apply to, and which job to ultimately accept, vary for different students. By improving our understanding of student motivations during the job search process, employers can make adjustments to their offers in order to strengthen and diversify the engineering workforce. By knowing what motivates students, advisors can design services to support students in a successful transition from school-to-work. These findings also may be of use to students themselves, helping them see the variety of ways that engineering students pursue and consider job options. 
    more » « less
  3. In northwest Florida, advanced manufacturing (AM) jobs far outpace the middle-skilled technician workforce, though AM constitutes almost a quarter of the region’s total employment. From 2018-2028, of the available 4.6 million manufacturing jobs, less than half are likely to be filled due to talent shortages. This widening “skills gap” is attributed to many factors that range from new technologies in the AM industry (e.g., artificial intelligence, robotics), a need for newer recruiting methods, branding, and incentives in AM educational programs. Some professionals have even indicated that manufacturing industries and AM educational programs should be aligned more to reflect the needs of the industry. Even in the wake of Covid-19, when there have been over 700,000 manufacturing jobs lost due to market conditions, many states still have jobs that go unfilled further suggesting that there are challenges in filling AM technician positions. In a time when technicians in AM are in high demand and the number of graduates are in low supply, it is critical to identify whether AM education is meeting the needs of new professionals in the workforce and what they believe can be improved in these programs. This is especially true in rural locales, where economies with manufacturing industries are much more reliant on them. In the context of a NSF Advanced Technological Education (ATE), through a multi-method approach, we sought to understand: 1) Which AM competencies skills did participants report as benefiting them in gaining employment? 2) Which competencies are needed on the job to be a successful AM technician? 3) What are the ways in which AM preparation can be improved to enhance employment outcomes? This study’s results will expand the research base and curriculum content recommendations for regional AM education, as well as build regional capacity for AM program assessment and improvement by replicating, refining, and disseminating study approaches through further research, annual AM employer and educator meetings, and annual research skill-building academies in which stakeholders transfer research findings to practices and policies that empower rural NW Florida colleges. To date, research efforts have demonstrated that competency perceptions of faculty, employers, and new professionals have notable misalignments that have opportunities for AM program curriculum revision and enhancement. This paper summarizes five years of research output, emphasizing the impactful findings and dissemination products for ASEE community members, as well as opportunities for further research. 
    more » « less
  4. Research shows that there is a growing need for skilled workers in the area of advanced manufacturing; this refers to making use of new technologies and advanced processes to produce products that have high value. More importantly, U.S. government employment data reveals that there is lack of supply of skilled workers in the manufacturing sector. Furthermore, it has also been widely cited in industrial literature that there is a concern regarding the job readiness of fresh college graduates and the gaps in skills sets needed to be successful in an industrial setting, especially in the engineering or manufacturing fields. One approach to bridge the skills gap is to provide customized continuing education to current the workforce as per the industry need. This paper presents a case study of such customized continuing education offered by Texas A&M University for oil and gas industry in Houston, Texas. Specifically, as a part of National Science Foundation Advanced Technological Education project, two professional development sessions were organized in the summer of 2018 in Houston targeting the energy industry. Both programs were two-days long and focused on two key aspects of high value manufacturing: manufacturing operations excellence and manufacturing quality excellence. The professional development sessions were focused on materials and inventory planning, production economics, manufacturing quality, non-destructive evaluation, statistical process control, and lean/ sixsigma. The continuing education programs and course materials were developed based on the feedback from the industry advisory board for the Manufacturing Center of Excellence at Houston Community College, which is a collaborating partner on the ATE Grant. As a part of assessment of the programs, industry participants in the both sessions were given comprehensive surveys asking for their feedback on the applicability of the educational sessions. Overall, the participants rated the sessions very highly on the organization and the relevancy of the program topics and learning materials. The participants also felt that they learned new information through these programs. 
    more » « less
  5. Abstract Background

    Engineering curricula are built around faculty and accreditors' perceptions of what knowledge, skills, and abilities graduates will need in engineering careers. However, the people making these decisions may not be fully aware of what industry employers require for engineering graduates.

    Purpose/Hypothesis

    The purpose of this study is to determine how industry employer‐sought professional and technical skills vary among engineering disciplines and levels of education.

    Design/Method

    Using a large sample (n = 26,103) of mined job advertisements, we use the O*NET skills database to determine the frequencies of different professional and technical skills for biomedical, civil, chemical, electrical, environmental, and mechanical engineers with bachelor's, master's, and PhD degrees.

    Results

    The most frequently sought professional skill is problem‐solving; the most frequently sought technical skills across disciplines are Microsoft Office software and computer‐aided design software. Although not the most frequently requested skills, job advertisements including the Python and MATLAB programming languages paid significantly higher salaries than those without.

    Conclusions

    The findings of this study have important implications for engineering program leaders and curriculum designers choosing which skills to teach students so that they are best prepared to get and excel in engineering jobs. The results also show which skills students can prioritize investing their time in so that they receive the largest financial return on their investment.

     
    more » « less