Constrained k-submodular maximization is a general framework that captures many discrete optimization problems such as ad allocation, influence maximization, personalized recommendation, and many others. In many of these applications, datasets are large or decisions need to be made in an online manner, which motivates the development of efficient streaming and online algorithms. In this work, we develop single-pass streaming and online algorithms for constrained k-submodular maximization with both monotone and general (possibly non-monotone) objectives subject to cardinality and knapsack constraints. Our algorithms achieve provable constant-factor approximation guarantees which improve upon the state of the art in almost all settings. Moreover, they achieve the fastest known running times and have optimal space usage. We experimentally evaluate our algorithms on instances for ad allocation and other applications, where we observe that our algorithms are practical and scalable, and construct solutions that are comparable in value even to offline greedy algorithms.
more »
« less
This content will become publicly available on February 25, 2026
Online and Streaming Algorithms for Constrained k-Submodular Maximization
Constrained k-submodular maximization is a general framework that captures many discrete optimization problems such as ad allocation, influence maximization, personalized recommendation, and many others. In many of these applications, datasets are large or decisions need to be made in an online manner, which motivates the development of efficient streaming and online algorithms. In this work, we develop single-pass streaming and online algorithms for constrained k-submodular maximization with both monotone and general (possibly non-monotone) objectives subject to cardinality and knapsack constraints. Our algorithms achieve provable constant-factor approximation guarantees which improve upon the state of the art in almost all settings. Moreover, they achieve the fastest known running times and have optimal space usage. We experimentally evaluate our algorithms on instances for ad allocation and other applications, where we observe that our algorithms are practical and scalable, and construct solutions that are comparable in value even to offline greedy algorithms.
more »
« less
- PAR ID:
- 10595211
- Publisher / Repository:
- AAAI Conference on Artificial Intelligence
- Date Published:
- ISSN:
- 2374-3468
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Maximizing a monotone k-submodular function subject to cardinality constraints is a general model for several applications ranging from influence maximization with multiple products to sensor placement with multiple sensor types and online ad allocation. Due to the large problem scale in many applications and the online nature of ad allocation, a need arises for algorithms that process elements in a streaming fashion and possibly make online decisions. In this work, we develop a new streaming algorithm for maximizing a monotone k-submodular function subject to a per-coordinate cardinality constraint attaining an approximation guarantee close to the state of the art guarantee in the offline setting. Though not typical for streaming algorithms, our streaming algorithm also readily applies to the online setting with free disposal. Our algorithm is combinatorial and enjoys fast running time and small number of function evaluations. Furthermore, its guarantee improves as the cardinality constraints get larger, which is especially suited for the large scale applications. For the special case of maximizing a submodular function with large budgets, our combinatorial algorithm matches the guarantee of the state-of-the-art continuous algorithm, which requires significantly more time and function evaluations.more » « less
-
We propose subsampling as a unified algorithmic technique for submodular maximization in centralized and online settings. The idea is simple: independently sample elements from the ground set and use simple combinatorial techniques (such as greedy or local search) on these sampled elements. We show that this approach leads to optimal/state-of-the-art results despite being much simpler than existing methods. In the usual off-line setting, we present SampleGreedy, which obtains a [Formula: see text]-approximation for maximizing a submodular function subject to a p-extendible system using [Formula: see text] evaluation and feasibility queries, where k is the size of the largest feasible set. The approximation ratio improves to p + 1 and p for monotone submodular and linear objectives, respectively. In the streaming setting, we present Sample-Streaming, which obtains a [Formula: see text]-approximation for maximizing a submodular function subject to a p-matchoid using O(k) memory and [Formula: see text] evaluation and feasibility queries per element, and m is the number of matroids defining the p-matchoid. The approximation ratio improves to 4p for monotone submodular objectives. We empirically demonstrate the effectiveness of our algorithms on video summarization, location summarization, and movie recommendation tasks.more » « less
-
Constrained submodular function maximization has been used in subset selection problems such as selection of most informative sensor locations. Although these models have been quite popular, the solutions obtained via this approach are unstable to perturbations in data defining the submodular functions. Robust submodular maximization has been proposed as a richer model that aims to overcome this discrepancy as well as increase the modeling scope of submodular optimization. In this work, we consider robust submodular maximization with structured combinatorial constraints and give efficient algorithms with provable guarantees. Our approach is applicable to constraints defined by single or multiple matroids and knapsack as well as distributionally robust criteria. We consider both the offline setting where the data defining the problem are known in advance and the online setting where the input data are revealed over time. For the offline setting, we give a general (nearly) optimal bicriteria approximation algorithm that relies on new extensions of classical algorithms for submodular maximization. For the online version of the problem, we give an algorithm that returns a bicriteria solution with sublinear regret. Summary of Contribution: Constrained submodular maximization is one of the core areas in combinatorial optimization with a wide variety of applications in operations research and computer science. Over the last decades, both communities have been interested on the design and analysis of new algorithms with provable guarantees. Sensor location, influence maximization and data summarization are some of the applications of submodular optimization that lie at the intersection of the aforementioned communities. Particularly, our work focuses on optimizing several submodular functions simultaneously. We provide new insights and algorithms to the offline and online variants of the problem which significantly expand the related literature. At the same time, we provide a computational study that supports our theoretical results.more » « less
-
We study the problem of differentially private constrained maximization of decomposable submodular functions. A submodular function is decomposable if it takes the form of a sum of submodular functions. The special case of maximizing a monotone, decomposable submodular function under cardinality constraints is known as the Combinatorial Public Projects (CPP) problem (Papadimitriou, Schapira, and Singer 2008). Previous work by Gupta et al. (2010) gave a differentially private algorithm for the CPP problem. We extend this work by designing differentially private algorithms for both monotone and non-monotone decomposable submodular maximization under general matroid constraints, with competitive utility guarantees. We complement our theoretical bounds with experiments demonstrating improved empirical performance.more » « less
An official website of the United States government
