NavCog3 is a smartphone turn-by-turn navigation assistant system we developed specifically designed to enable independent navigation for people with visual impairments. Using off-the-shelf Bluetooth beacons installed in the surrounding environment and a commodity smartphone carried by the user, NavCog3 achieves unparalleled localization accuracy in real-world large-scale scenarios. By leveraging its accurate localization capabilities, NavCog3 guides the user through the environment and signals the presence of semantic features and points of interest in the vicinity (e.g., doorways, shops).To assess the capability of NavCog3 to promote independent mobility of individuals with visual impairments, we deployed and evaluated the system in two challenging real-world scenarios. The first scenario demonstrated the scalability of the system, which was permanently installed in a five-story shopping mall spanning three buildings and a public underground area. During the study, 10 participants traversed three fixed routes, and 43 participants traversed free-choice routes across the environment. The second scenario validated the system’s usability in the wild in a hotel complex temporarily equipped with NavCog3 during a conference for individuals with visual impairments. In the hotel, almost 14.2h of system usage data were collected from 37 unique users who performed 280 travels across the environment, for a total of 30,200m
more »
« less
Personalized Dynamics Models for Adaptive Assistive Navigation Systems
Consider an assistive system that guides visually impaired users through speech and haptic feedback to their destination. Existing robotic and ubiquitous navigation technologies (e.g., portable, ground, or wearable systems) often operate in a generic, user-agnostic manner. However, to minimize confusion and navigation errors, our real-world analysis reveals a crucial need to adapt theinstructional guidance across different end-users with diverse mobility skills. To address this practical issue in scalable system design, we propose a novel model based reinforcement learning framework for personalizing the system-user interaction experience. When incrementally adapting the system to new users, we propose to use a weighted experts model for addressing data-efficiency limitations in transfer learning with deep models. A real-world dataset of navigation by blind users is used to show that the proposed approach allows for (1) more accurate long-term human behavior prediction (up to 20 seconds into the future) through improved reasoning over personal mobility characteristics, interaction with surrounding obstacles, and the current navigation goal, and (2) quick adaptation at the onset of learning, when data is limited.
more »
« less
- Award ID(s):
- 1637927
- PAR ID:
- 10304266
- Date Published:
- Journal Name:
- 2nd Conference on Robot Learning
- Volume:
- 87
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Chaudhuri, Kamalika; Jegelka, Stefanie; Song, Le; Szepesvari, Csaba; Niu, Gang; Sabato, Sivan (Ed.)In real-world recommendation problems, especially those with a formidably large item space, users have to gradually learn to estimate the utility of any fresh recommendations from their experience about previously consumed items. This in turn affects their interaction dynamics with the system and can invalidate previous algorithms built on the omniscient user assumption. In this paper, we formalize a model to capture such ”learning users” and design an efficient system-side learning solution, coined Noise-Robust Active Ellipsoid Search (RAES), to confront the challenges brought by the non-stationary feedback from such a learning user. Interestingly, we prove that the regret of RAES deteriorates gracefully as the convergence rate of user learning becomes worse, until reaching linear regret when the user’s learning fails to converge. Experiments on synthetic datasets demonstrate the strength of RAES for such a contemporaneous system-user learning problem. Our study provides a novel perspective on modeling the feedback loop in recommendation problems.more » « less
-
Point of interest (POI) recommendation, which provides personalized recommendation of places to mobile users, is an important task in location-based social networks (LBSNs). However, quite different from traditional interest-oriented merchandise recommendation, POI recommendation is more complex due to the timing effects: we need to examine whether the POI fits a user’s availability. While there are some prior studies which included the temporal effect into POI recommendations, they overlooked the compatibility between time-varying popularity of POIs and regular availability of users, which we believe has a non-negligible impact on user decision-making. To this end, in this paper, we present a novel method which incorporates the degree of temporal matching between users and POIs into personalized POI recommendations. Specifically, we first profile the temporal popularity of POIs to show when a POI is popular for visit by mining the spatio-temporal human mobility and POI category data. Secondly, we propose latent user regularities to characterize when a user is regularly available for exploring POIs, which is learned with a user-POI temporal matching function. Finally, results of extensive experiments with real-world POI check-in and human mobility data demonstrate that our proposed user-POI temporal matching method delivers substantial advantages over baseline models for POI recommendation tasks.more » « less
-
null (Ed.)Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complex and user relations can be high-order. Hypergraph provides a natural way to model high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. Extensive experiments on multiple real-world datasets demonstrate the superiority of the proposed model over the current SOTA methods, and the ablation study verifies the effectiveness and rationale of the multi-channel setting and the self-supervised task. The implementation of our model is available via https://github.com/Coder-Yu/RecQ.more » « less
-
Navigation assistive technologies have been designed to support individuals with visual impairments during independent mobility by providing sensory augmentation and contextual awareness of their surroundings. Such information is habitually provided through predefned audio-haptic interaction paradigms. However, individual capabilities, preferences and behavior of people with visual impairments are heterogeneous, and may change due to experience, context and necessity. Therefore, the circumstances and modalities for providing navigation assistance need to be personalized to different users, and through time for each user. We conduct a study with 13 blind participants to explore how the desirability of messages provided during assisted navigation varies based on users' navigation preferences and expertise. The participants are guided through two different routes, one without prior knowledge and one previously studied and traversed. The guidance is provided through turn-by-turn instructions, enriched with contextual information about the environment. During navigation and follow-up interviews, we uncover that participants have diversifed needs for navigation instructions based on their abilities and preferences. Our study motivates the design of future navigation systems capable of verbosity level personalization in order to keep the users engaged in the current situational context while minimizing distractions.more » « less
An official website of the United States government

