skip to main content

Title: Multimodal estimation and communication of latent semantic knowledge for robust execution of robot instructions
The goal of this article is to enable robots to perform robust task execution following human instructions in partially observable environments. A robot’s ability to interpret and execute commands is fundamentally tied to its semantic world knowledge. Commonly, robots use exteroceptive sensors, such as cameras or LiDAR, to detect entities in the workspace and infer their visual properties and spatial relationships. However, semantic world properties are often visually imperceptible. We posit the use of non-exteroceptive modalities including physical proprioception, factual descriptions, and domain knowledge as mechanisms for inferring semantic properties of objects. We introduce a probabilistic model that fuses linguistic knowledge with visual and haptic observations into a cumulative belief over latent world attributes to infer the meaning of instructions and execute the instructed tasks in a manner robust to erroneous, noisy, or contradictory evidence. In addition, we provide a method that allows the robot to communicate knowledge dissonance back to the human as a means of correcting errors in the operator’s world model. Finally, we propose an efficient framework that anticipates possible linguistic interactions and infers the associated groundings for the current world state, thereby bootstrapping both language understanding and generation. We present experiments on manipulators for tasks that more » require inference over partially observed semantic properties, and evaluate our framework’s ability to exploit expressed information and knowledge bases to facilitate convergence, and generate statements to correct declared facts that were observed to be inconsistent with the robot’s estimate of object properties. « less
 ;  ;  ;  ;  ;  ;  
Award ID(s):
Publication Date:
Journal Name:
The International Journal of Robotics Research
Sponsoring Org:
National Science Foundation
More Like this
  1. Contemporary approaches to perception, planning, estimation, and control have allowed robots to operate robustly as our remote surrogates in uncertain, unstructured environments. This progress now creates an opportunity for robots to operate not only in isolation, but also with and alongside humans in our complex environments. Realizing this opportunity requires an efficient and flexible medium through which humans can communicate with collaborative robots. Natural language provides one such medium, and through significant progress in statistical methods for natural-language understanding, robots are now able to interpret a diverse array of free-form navigation, manipulation, and mobile-manipulation commands. However, most contemporary approaches require a detailed, prior spatial-semantic map of the robot’s environment that models the space of possible referents of an utterance. Consequently, these methods fail when robots are deployed in new, previously unknown, or partially-observed environments, particularly when mental models of the environment differ between the human operator and the robot. This paper provides a comprehensive description of a novel learning framework that allows field and service robots to interpret and correctly execute natural-language instructions in a priori unknown, unstructured environments. Integral to our approach is its use of language as a “sensor”—inferring spatial, topological, and semantic information implicit in natural-language utterancesmore »and then exploiting this information to learn a distribution over a latent environment model. We incorporate this distribution in a probabilistic, language grounding model and infer a distribution over a symbolic representation of the robot’s action space, consistent with the utterance. We use imitation learning to identify a belief-space policy that reasons over the environment and behavior distributions. We evaluate our framework through a variety of different navigation and mobile-manipulation experiments involving an unmanned ground vehicle, a robotic wheelchair, and a mobile manipulator, demonstrating that the algorithm can follow natural-language instructions without prior knowledge of the environment.« less
  2. Recent advances in data-driven models for grounded language understanding have enabled robots to interpret increasingly complex instructions. Two fundamental limitations of these methods are that most require a full model of the environment to be known a priori, and they attempt to reason over a world representation that is flat and unnecessarily detailed, which limits scalability. Recent semantic mapping methods address partial observability by exploiting language as a sensor to infer a distribution over topological, metric and semantic properties of the environment. However, maintaining a distribution over highly detailed maps that can support grounding of diverse instructions is computationally expensive and hinders real-time human-robot collaboration. We propose a novel framework that learns to adapt perception according to the task in order to maintain compact distributions over semantic maps. Experiments with a mobile manipulator demonstrate more efficient instruction following in a priori unknown environments.
  3. We study open-world 3D scene understanding, a family of tasks that require agents to reason about their 3D environment with an open-set vocabulary and out-of-domain visual inputs - a critical skill for robots to operate in the unstructured 3D world. Towards this end, we propose Semantic Abstraction (SemAbs), a framework that equips 2D Vision-Language Models (VLMs) with new 3D spatial capabilities, while maintaining their zero-shot robustness. We achieve this abstraction using relevancy maps extracted from CLIP, and learn 3D spatial and geometric reasoning skills on top of those abstractions in a semantic-agnostic manner. We demonstrate the usefulness of SemAbs on two open-world 3D scene understanding tasks: 1) completing partially observed objects and 2) localizing hidden objects from language descriptions. Experiments show that SemAbs can generalize to novel vocabulary, materials/lighting, classes, and domains (i.e., real-world scans) from training on limited 3D synthetic data.
  4. In natural language processing, most models try to learn semantic representations merely from texts. The learned representations encode the “distributional semantics” but fail to connect to any knowledge about the physical world. In contrast, humans learn language by grounding concepts in perception and action and the brain encodes “grounded semantics” for cognition. Inspired by this notion and recent work in vision-language learning, we design a two-stream model for grounding language learning in vision. The model includes a VGG-based visual stream and a Bert-based language stream. The two streams merge into a joint representational space. Through cross-modal contrastive learning, the model first learns to align visual and language representations with the MS COCO dataset. The model further learns to retrieve visual objects with language queries through a cross-modal attention module and to infer the visual relations between the retrieved objects through a bilinear operator with the Visual Genome dataset. After training, the model’s language stream is a stand-alone language model capable of embedding concepts in a visually grounded semantic space. This semantic space manifests principal dimensions explainable with human intuition and neurobiological knowledge. Word embeddings in this semantic space are predictive of human-defined norms of semantic features and are segregated intomore »perceptually distinctive clusters. Furthermore, the visually grounded language model also enables compositional language understanding based on visual knowledge and multimodal image search with queries based on images, texts, or their combinations.« less
  5. The utility of collaborative manipulators for shared tasks is highly dependent on the speed and accuracy of communication between the human and the robot. The run-time of recently developed probabilistic inference models for situated symbol grounding of natural language instructions depends on the complexity of the representation of the environment in which they reason. As we move towards more complex bi-directional interactions, tasks, and environments, we need intelligent perception models that can selectively infer precise pose, semantics, and affordances of the objects when inferring exhaustively detailed world models is inefficient and prohibits real-time interaction with these robots. In this paper we propose a model of language and perception for the problem of adapting the configuration of the robot perception pipeline for tasks where constructing exhaustively detailed models of the environment is inefficient and in- consequential for symbol grounding. We present experimental results from a synthetic corpus of natural language instructions for robot manipulation in example environments. The results demonstrate that by adapting perception we get significant gains in terms of run-time for perception and situated symbol grounding of the language instructions without a loss in the accuracy of the latter.