skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ferromagnetic gyroscopes for tests of fundamental physics
Abstract A ferromagnetic gyroscope (FG) is a ferromagnet whose angular momentum is dominated by electron spin polarization and that will process under the action of an external torque, such as that due to a magnetic field. Here we model and analyze FG dynamics and sensitivity, focusing on practical schemes for experimental realization. In the case of a freely floating FG, we model the transition from dynamics dominated by libration in relatively high externally applied magnetic fields, to those dominated by precession at relatively low applied fields. Measurement of the libration frequency enablesin situdetermination of the magnetic field and a technique to reduce the field below the threshold for which precession dominates the FG dynamics. We note that evidence of gyroscopic behavior is present even at magnetic fields much larger than the threshold field below which precession dominates. We also model the dynamics of an FG levitated above a type-I superconductor via the Meissner effect, and find that for FGs with dimensions larger than about 100 nm the observed precession frequency is reduced compared to that of a freely floating FG. This is due to an effect akin to negative feedback that arises from the distortion of the field from the FG by the superconductor. Finally we assess the sensitivity of an FG levitated above a type-I superconductor to exotic spin-dependent interactions under practical experimental conditions, demonstrating the potential of FGs for tests of fundamental physics.  more » « less
Award ID(s):
1707875 1806557
PAR ID:
10304409
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Quantum Science and Technology
Volume:
6
Issue:
2
ISSN:
2058-9565
Page Range / eLocation ID:
Article No. 024006
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Levitated ferromagnets act as ultraprecise magnetometers, which can exhibit high quality factors due to their excellent isolation from the environment. These instruments can be utilized in searches for ultralight dark matter candidates, such as axionlike dark matter or dark-photon dark matter. In addition to being sensitive to an axion-photon coupling or kinetic mixing, which produce physical magnetic fields, ferromagnets are also sensitive to the effective magnetic field (or “axion wind”) produced by an axion-electron coupling. While the dynamics of a levitated ferromagnet in response to a dc magnetic field have been well studied, all of these couplings would produce ac fields. In this work, we study the response of a ferromagnet to an applied ac magnetic field and use these results to project their sensitivity to axion and dark-photon dark matter. We pay special attention to the direction of motion induced by an applied ac field, in particular, whether it precesses around the applied field (similar to an electron spin) or librates in the plane of the field (similar to a compass needle). We show that existing levitated ferromagnet setups can already have comparable sensitivity to an axion-electron coupling as comagnetometer or torsion balance experiments. In addition, future setups can become sensitive probes of axion-electron coupling, dark-photon kinetic mixing, and axion-photon coupling, for ultralight dark matter masses < 5feV. 
    more » « less
  2. Abstract Experiments investigating magnetic-field-tuned superconductor–insulator transition (HSIT) mostly focus on two-dimensional material systems where the transition and its proximate ground-state phases, often exhibit features that are seemingly at odds with the expected behavior. Here we present a complementary study of a three-dimensional pressure-packed amorphous indium-oxide (InOx) powder where granularity controls the HSIT. Above a low threshold pressure of ∼0.2 GPa, vestiges of superconductivity are detected, although neither a true superconducting transition nor insulating behavior are observed. Instead, a saturation at very high resistivity at low pressure is followed by saturation at very low resistivity at higher pressure. We identify both as different manifestations of anomalous metallic phases dominated by superconducting fluctuations. By analogy with previous identification of the low resistance saturation as a ‘failed superconductor’, our data suggests that the very high resistance saturation is a manifestation of a ‘failed insulator’. Above a threshold pressure of ∼6 GPa, the sample becomes fully packed, and superconductivity is robust, withTCtunable with pressure. A quantum critical point atPC∼ 25 GPa marks the complete suppression of superconductivity. For a finite pressure belowPC, a magnetic field is shown to induce a HSIT from a true zero-resistance superconducting state to a weakly insulating behavior. Determining the critical field,HC, we show that similar to the 2D behavior, the insulating-like state maintains a superconducting character, which is quenched at higher field, above which the magnetoresistance decreases to its fermionic normal state value. 
    more » « less
  3. Nickel magnetic nanowires (NWs) have attracted significant attention due to their unique properties, which are useful for basic studies and technological applications, for example in biomedicine. Their structure and magnetic properties were systematically studied in the recent years. In this work, Ni NWs with high aspect ratios (length/diameter ~250) were fabricated by electrodeposition into commercial anodic aluminum oxide templates. The templates were then etched and the NWs were suspended in water, where their hydrodynamic size was evaluated by dynamic light scattering. The magnetic response of these NWs as a function of an external magnetic field indicates a dominant shape anisotropy with propagation of the vortex domain wall as the main magnetization reversal process. The suspension of Ni NWs was used in the synthesis of two types of polyacrylamide ferrogels (FGs) by free radical polymerization, with weight fractions of Ni NWs in FGs of 0.036% and 0.169%. The FGs were reasonably homogeneous. The magnetic response of these FGs (hysteresis loops) indicated that the NWs are randomly oriented inside the FG, and their magnetic response remains stable after embedding. 
    more » « less
  4. Switching of magnetization by spin–orbit torque in the (Ga,Mn)(As,P) film was studied with currents along ⟨100⟩ crystal directions and an in-plane magnetic field bias. This geometry allowed us to identify the presence of two independent spin–orbit-induced magnetic fields: the Rashba field and the Dresselhaus field. Specifically, we observe that when the in-plane bias field is along the current (I[Formula: see text]H bias ), switching is dominated by the Rashba field, while the Dresselhaus field dominates magnetization reversal when the bias field is perpendicular to the current (I ⊥ H bias ). In our experiments, the magnitudes of the Rashba and Dresselhaus fields were determined to be 2.0 and 7.5 Oe, respectively, at a current density of 8.0 × 10 5 A/cm 2 . 
    more » « less
  5. Electron-nuclear spin interactions by pulsed optical pumping have been found to polarize the nuclear spin system, leading to the nuclei building up an intrinsic magnetic field known as the Overhauser field. Studies have indicated an Overhauser field hysteresis effect dependent on the sweep direction of an externally applied magnetic field in negatively detuned periodically pumped Si-doped GaAs. Although predictions of bistable mode-locked electron spin precession frequency modes have been made for systems exhibiting this hysteresis, there have been no reports on the experimental observation of said bistable spin precession modes. This report details the evolution of bistable Overhauser field solutions leading to a hysteretic effect in negatively detuned optical excitation of Si-doped GaAs by magneto-optic pump–probe spectroscopy in the Voigt geometry and investigates the resulting consequence of this hysteresis acting on the electron spin system. One manifestation of the Overhauser field hysteresis acting on the electron spin system leads to the discretization of bistable mode-locked electron spin precession modes within a given band of externally applied magnetic fields. A method for preferentially accessing the two different and stable mode-locked spin precession modes within a given band of externally applied magnetic field is outlined, which may be of interest for communities utilizing electron and nuclear spins for information processing protocols. 
    more » « less