skip to main content

This content will become publicly available on September 12, 2023

Title: Spin orbit torque switching of magnetization in the presence of two different orthogonal spin–orbit magnetic fields
Switching of magnetization by spin–orbit torque in the (Ga,Mn)(As,P) film was studied with currents along ⟨100⟩ crystal directions and an in-plane magnetic field bias. This geometry allowed us to identify the presence of two independent spin–orbit-induced magnetic fields: the Rashba field and the Dresselhaus field. Specifically, we observe that when the in-plane bias field is along the current (I[Formula: see text]H bias ), switching is dominated by the Rashba field, while the Dresselhaus field dominates magnetization reversal when the bias field is perpendicular to the current (I ⊥ H bias ). In our experiments, the magnitudes of the Rashba and Dresselhaus fields were determined to be 2.0 and 7.5 Oe, respectively, at a current density of 8.0 × 10 5 A/cm 2 .
Authors:
; ; ; ; ; ;
Award ID(s):
1905277
Publication Date:
NSF-PAR ID:
10381868
Journal Name:
Applied Physics Letters
Volume:
121
Issue:
11
Page Range or eLocation-ID:
112403
ISSN:
0003-6951
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Spin–orbit-induced (SOI) effective magnetic field in GaMnAs film with in-plane magnetic anisotropy has been investigated by planar Hall effect measurements. The presence of SOI field was identified by a shift between planar Hall resistance (PHR) hystereses observed with positive and negative currents. The difference of switching fields occurring between the two current polarities, which is determined by the strength of the SOI field, is shown to depend on the external field direction. In this paper we have developed a method for obtaining the magnitude of the SOI fields based on magnetic free energy that includes the effects of magnetic anisotropy and the SOI field. Using this approach, the SOI field for a given current density was accurately obtained by fitting to the observed dependence of the switching fields on the applied field directions. Values of the SOI field obtained with field scan PHR measurements give results that are consistent with those obtained by analyzing the angular dependence of PHR, indicating the reliability of the field scan PHR method for quantifying the SOI-field in GaMnAs films. The magnitude of the SOI field systematically increases with increasing current density, demonstrating the usefulness of SOI fields for manipulation of magnetization by currentmore »in GaMnAs films.« less
  2. Abstract

    The interfacial Dzyaloshinskii-Moriya interaction (DMI) holds promises for design and control of chiral spin textures in low-dimensional magnets with efficient current-driven dynamics. Recently, an interlayer DMI has been found to exist across magnetic multilayers with a heavy-metal spacer between magnetic layers. This opens the possibility of chirality in these three-dimensional magnetic structures. Here we show the existence of the interlayer DMI in a synthetic antiferromagnetic multilayer with both inversion and in-plane asymmetry. We analyse the interlayer DMI’s effects on the magnetization and the current-induced spin-orbit torque (SOT) switching of magnetization through a combination of experimental and numerical studies. The chiral nature of the interlayer DMI leads to an asymmetric SOT switching of magnetization under an in-plane magnetic field. Our work paves the way for further explorations on controlling chiral magnetizations across magnetic multilayers through SOTs, which can provide a new path in the design of SOT devices.

  3. Switching of perpendicular magnetization via spin–orbit torque (SOT) is of particular interest in the development of non-volatile magnetic random access memory (MRAM) devices. We studied current-induced magnetization switching of Ir/GdFeCo/Cu/Pt heterostructures in a Hall cross geometry as a function of the in-plane applied magnetic field. Remarkably, magnetization switching is observed at zero applied field. This is shown to result from the competition between SOT, the Oersted field generated by the charge current, and the material's coercivity. Our results show a means of achieving zero-field switching that can impact the design of future spintronics devices, such as SOT-MRAM.
  4. Abstract The interconversion of charge and spin currents via spin-Hall effect is essential for spintronics. Energy-efficient and deterministic switching of magnetization can be achieved when spin polarizations of these spin currents are collinear with the magnetization. However, symmetry conditions generally restrict spin polarizations to be orthogonal to both the charge and spin flows. Spin polarizations can deviate from such direction in nonmagnetic materials only when the crystalline symmetry is reduced. Here, we show control of the spin polarization direction by using a non-collinear antiferromagnet Mn 3 GaN, in which the triangular spin structure creates a low magnetic symmetry while maintaining a high crystalline symmetry. We demonstrate that epitaxial Mn 3 GaN/permalloy heterostructures can generate unconventional spin-orbit torques at room temperature corresponding to out-of-plane and Dresselhaus-like spin polarizations which are forbidden in any sample with two-fold rotational symmetry. Our results demonstrate an approach based on spin-structure design for controlling spin-orbit torque, enabling high-efficient antiferromagnetic spintronics.
  5. Abstract

    Current-induced spin-orbit torques (SOTs) are of interest for fast and energy-efficient manipulation of magnetic order in spintronic devices. To be deterministic, however, switching of perpendicularly magnetized materials by SOT requires a mechanism for in-plane symmetry breaking. Existing methods to do so involve the application of an in-plane bias magnetic field, or incorporation of in-plane structural asymmetry in the device, both of which can be difficult to implement in practical applications. Here, we report bias-field-free SOT switching in a single perpendicular CoTb layer with an engineered vertical composition gradient. The vertical structural inversion asymmetry induces strong intrinsic SOTs and a gradient-driven Dzyaloshinskii–Moriya interaction (g-DMI), which breaks the in-plane symmetry during the switching process. Micromagnetic simulations are in agreement with experimental results, and elucidate the role of g-DMI in the deterministic switching processes. This bias-field-free switching scheme for perpendicular ferrimagnets with g-DMI provides a strategy for efficient and compact SOT device design.