skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Convergent numerical method for the reflector antenna problem via optimal transport on the sphere
We consider a partial differential equation (PDE) approach to numerically solve the reflector antenna problem by solving an optimal transport problem on the unit sphere with cost function c ( x , y ) = −<#comment/> 2 log ⁡<#comment/> | | x −<#comment/> y | | . At each point on the sphere, we replace the surface PDE with a generalized Monge–Ampère type equation posed on the local tangent plane. We then use a provably convergent finite difference scheme to approximate the solution and construct the reflector. The method is easily adapted to take into account highly nonsmooth data and solutions, which makes it particularly well adapted to real-world optics problems. Computational examples demonstrate the success of this method in computing reflectors for a range of challenging problems including discontinuous intensities and intensities supported on complicated geometries.  more » « less
Award ID(s):
1751996 1619807
PAR ID:
10306001
Author(s) / Creator(s):
;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Journal of the Optical Society of America A
Volume:
38
Issue:
11
ISSN:
1084-7529; JOAOD6
Format(s):
Medium: X Size: Article No. 1704
Size(s):
Article No. 1704
Sponsoring Org:
National Science Foundation
More Like this
  1. We show that if L 1 \mathcal {L}_1 and L 2 \mathcal {L}_2 are linear transformations from Z d \mathbb {Z}^d to Z d \mathbb {Z}^d satisfying certain mild conditions, then, for any finite subset A A of Z d \mathbb {Z}^d , | L 1 A + L 2 A | ≥<#comment/> ( | det ( L 1 ) | 1 / d + | det ( L 2 ) | 1 / d ) d | A | −<#comment/> o ( | A | ) . \begin{equation*} |\mathcal {L}_1 A+\mathcal {L}_2 A|\geq \left ( |\det (\mathcal {L}_1)|^{1/d}+|\det (\mathcal {L}_2)|^{1/d} \right )^d|A|- o(|A|). \end{equation*} This result corrects and confirms the two-summand case of a conjecture of Bukh and is best possible up to the lower-order term for certain choices of L 1 \mathcal {L}_1 and L 2 \mathcal {L}_2 . As an application, we prove a lower bound for | A + λ<#comment/> ⋅<#comment/> A | |A + \lambda \cdot A| when A A is a finite set of real numbers and λ<#comment/> \lambda is an algebraic number. In particular, when λ<#comment/> \lambda is of the form ( p / q ) 1 / d (p/q)^{1/d} for some p , q , d ∈<#comment/> N p, q, d \in \mathbb {N} , each taken as small as possible for such a representation, we show that | A + λ<#comment/> ⋅<#comment/> A | ≥<#comment/> ( p 1 / d + q 1 / d ) d | A | −<#comment/> o ( | A | ) . \begin{equation*} |A + \lambda \cdot A| \geq (p^{1/d} + q^{1/d})^d |A| - o(|A|). \end{equation*} This is again best possible up to the lower-order term and extends a recent result of Krachun and Petrov which treated the case λ<#comment/> = 2 \lambda = \sqrt {2}
    more » « less
  2. In this paper we derive the best constant for the following L ∞<#comment/> L^{\infty } -type Gagliardo-Nirenberg interpolation inequality ‖<#comment/> u ‖<#comment/> L ∞<#comment/> ≤<#comment/> C q , ∞<#comment/> , p ‖<#comment/> u ‖<#comment/> L q + 1 1 −<#comment/> θ<#comment/> ‖<#comment/> ∇<#comment/> u ‖<#comment/> L p θ<#comment/> , θ<#comment/> = p d d p + ( p −<#comment/> d ) ( q + 1 ) , \begin{equation*} \|u\|_{L^{\infty }}\leq C_{q,\infty ,p} \|u\|^{1-\theta }_{L^{q+1}}\|\nabla u\|^{\theta }_{L^p},\quad \theta =\frac {pd}{dp+(p-d)(q+1)}, \end{equation*} where parameters q q and p p satisfy the conditions p > d ≥<#comment/> 1 p>d\geq 1 , q ≥<#comment/> 0 q\geq 0 . The best constant C q , ∞<#comment/> , p C_{q,\infty ,p} is given by C q , ∞<#comment/> , p = θ<#comment/> −<#comment/> θ<#comment/> p ( 1 −<#comment/> θ<#comment/> ) θ<#comment/> p M c −<#comment/> θ<#comment/> d , M c ∫<#comment/> R d u c , ∞<#comment/> q + 1 d x , \begin{equation*} C_{q,\infty ,p}=\theta ^{-\frac {\theta }{p}}(1-\theta )^{\frac {\theta }{p}}M_c^{-\frac {\theta }{d}},\quad M_c≔\int _{\mathbb {R}^d}u_{c,\infty }^{q+1} dx, \end{equation*} where u c , ∞<#comment/> u_{c,\infty } is the unique radial non-increasing solution to a generalized Lane-Emden equation. The case of equality holds when u = A u c , ∞<#comment/> ( λ<#comment/> ( x −<#comment/> x 0 ) ) u=Au_{c,\infty }(\lambda (x-x_0)) for any real numbers A A , λ<#comment/> > 0 \lambda >0 and x 0 ∈<#comment/> R d x_{0}\in \mathbb {R}^d . In fact, the generalized Lane-Emden equation in R d \mathbb {R}^d contains a delta function as a source and it is a Thomas-Fermi type equation. For q = 0 q=0 or d = 1 d=1 , u c , ∞<#comment/> u_{c,\infty } have closed form solutions expressed in terms of the incomplete Beta functions. Moreover, we show that u c , m →<#comment/> u c , ∞<#comment/> u_{c,m}\to u_{c,\infty } and C q , m , p →<#comment/> C q , ∞<#comment/> , p C_{q,m,p}\to C_{q,\infty ,p} as m →<#comment/> + ∞<#comment/> m\to +\infty for d = 1 d=1 , where u c , m u_{c,m} and C q , m , p C_{q,m,p} are the function achieving equality and the best constant of L m L^m -type Gagliardo-Nirenberg interpolation inequality, respectively. 
    more » « less
  3. We report on spectroscopic measurements on the 4 f 7 6 s 2 8 S 7 / 2 ∘<#comment/> →<#comment/> 4 f 7 ( 8 S ∘<#comment/> ) 6 s 6 p ( 1 P ∘<#comment/> ) 8 P 9 / 2 transition in neutral europium-151 and europium-153 at 459.4 nm. The center of gravity frequencies for the 151 and 153 isotopes, reported for the first time in this paper, to our knowledge, were found to be 652,389,757.16(34) MHz and 652,386,593.2(5) MHz, respectively. The hyperfine coefficients for the 6 s 6 p ( 1 P ∘<#comment/> ) 8 P 9 / 2 state were found to be A ( 151 ) = −<#comment/> 228.84 ( 2 ) M H z , B ( 151 ) = 226.9 ( 5 ) M H z and A ( 153 ) = −<#comment/> 101.87 ( 6 ) M H z , B ( 153 ) = 575.4 ( 1.5 ) M H z , which all agree with previously published results except for A(153), which shows a small discrepancy. The isotope shift is found to be 3163.8(6) MHz, which also has a discrepancy with previously published results. 
    more » « less
  4. We demonstrate the DC-Kerr effect in plasma enhanced chemical vapor deposition (PECVD) silicon-rich nitride (SRN) and use it to demonstrate a third order nonlinear susceptibility, χ<#comment/> ( 3 ) , as high as ( 6 ±<#comment/> 0.58 ) ×<#comment/> 10 −<#comment/> 19 m 2 / V 2 . We employ spectral shift versus applied voltage measurements in a racetrack resonator as a tool to characterize the nonlinear susceptibilities of these films. In doing so, we demonstrate a χ<#comment/> ( 3 ) larger than that of silicon and argue that PECVD SRN can provide a versatile platform for employing optical phase shifters while maintaining a low thermal budget using a deposition technique readily available in CMOS process flows. 
    more » « less
  5. We introduce the notions of symmetric and symmetrizable representations of SL 2 ⁡<#comment/> ( Z ) {\operatorname {SL}_2(\mathbb {Z})} . The linear representations of SL 2 ⁡<#comment/> ( Z ) {\operatorname {SL}_2(\mathbb {Z})} arising from modular tensor categories are symmetric and have congruence kernel. Conversely, one may also reconstruct modular data from finite-dimensional symmetric, congruence representations of SL 2 ⁡<#comment/> ( Z ) {\operatorname {SL}_2(\mathbb {Z})} . By investigating a Z / 2 Z \mathbb {Z}/2\mathbb {Z} -symmetry of some Weil representations at prime power levels, we prove that all finite-dimensional congruence representations of SL 2 ⁡<#comment/> ( Z ) {\operatorname {SL}_2(\mathbb {Z})} are symmetrizable. We also provide examples of unsymmetrizable noncongruence representations of SL 2 ⁡<#comment/> ( Z ) {\operatorname {SL}_2(\mathbb {Z})} that are subrepresentations of a symmetric one. 
    more » « less