A central goal in creating long-distance quantum networks and distributed quantum computing is the development of interconnected and individually controlled qubit nodes. Atom-like emitters in diamond have emerged as a leading system for optically networked quantum memories, motivating the development of visible-spectrum, multi-channel photonic integrated circuit (PIC) systems for scalable atom control. However, it has remained an open challenge to realize optical programmability with a qubit layer that can achieve high optical detection probability over many optical channels. Here, we address this problem by introducing a modular architecture of piezoelectrically actuated atom-control PICs (APICs) and artificial atoms embedded in diamond nanostructures designed for high-efficiency free-space collection. The high-speed four-channel APIC is based on a splitting tree mesh with triple-phase shifter Mach–Zehnder interferometers. This design simultaneously achieves optically broadband operation at visible wavelengths, high-fidelity switching (>40dB) at low voltages, submicrosecond modulation timescales (>30MHz), and minimal channel-to-channel crosstalk for repeatable optical pulse carving. Via a reconfigurable free-space interconnect, we use the APIC to address single silicon vacancy color centers in individual diamond waveguides with inverse tapered couplers, achieving efficient single photon detection probabilities (∼15%) and second-order autocorrelation measurementsg(2)(0)<0.14 for all channels. The modularity of this distributed APIC–quantum memory system simplifies the quantum control problem, potentially enabling further scaling to thousands of channels.
more »
« less
This content will become publicly available on December 1, 2026
An integrated photonic engine for programmable atomic control
Abstract Solutions for scalable, high-performance optical control are important for the development of scaled atom-based quantum technologies. Modulation of many individual optical beams is central to applying arbitrary gate and control sequences on arrays of atoms or atom-like systems. At telecom wavelengths, miniaturization of optical components via photonic integration has pushed the scale and performance of classical and quantum optics far beyond the limitations of bulk devices. However, material platforms for high-speed telecom integrated photonics lack transparency at the short wavelengths required by leading atomic systems. Here, we propose and implement a scalable and reconfigurable photonic control architecture using integrated, visible-light modulators based on thin-film lithium niobate. We combine this system with techniques in free-space optics and holography to demonstrate multi-channel, gigahertz-rate visible beamshaping. When applied to silicon-vacancy artificial atoms, our system enables the spatial and spectral addressing of a dynamically-selectable set of these stochastically-positioned point emitters.
more »
« less
- Award ID(s):
- 2317134
- PAR ID:
- 10581036
- Publisher / Repository:
- Nature Communications
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 16
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Advances in laser technology have driven discoveries in atomic, molecular, and optical (AMO) physics and emerging applications, from quantum computers with cold atoms or ions, to quantum networks with solid-state color centers. This progress is motivating the development of a new generation of optical control systems that can manipulate the light field with high fidelity at wavelengths relevant for AMO applications. These systems are characterized by criteria: (C1) operation at a design wavelength of choice in the visible (VIS) or near-infrared (IR) spectrum, (C2) a scalable platform that can support large channel counts, (C3) high-intensity modulation extinction and (C4) repeatability compatible with low gate errors, and (C5) fast switching times. Here, we provide a pathway to address these challenges by introducing an atom control architecture based on VIS-IR photonic integrated circuit (PIC) technology. Based on a complementary metal–oxide–semiconductor fabrication process, this atom-control PIC (APIC) technology can meet system requirements (C1)–(C5). As a proof of concept, we demonstrate a 16-channel silicon-nitride-based APIC with (5.8±0.4)ns response times and >30dB extinction ratio at a wavelength of 780 nm.more » « less
-
Optical isolators are an essential component of photonic systems. Current integrated optical isolators have limited bandwidths due to stringent phase-matching conditions, resonant structures, or material absorption. Here, we demonstrate a wideband integrated optical isolator in thin-film lithium niobate photonics. We use dynamic standing-wave modulation in a tandem configuration to break Lorentz reciprocity and achieve isolation. We measure an isolation ratio of 15 dB and insertion loss below 0.5 dB for a continuous wave laser input at 1550 nm. In addition, we experimentally show that this isolator can simultaneously operate at visible and telecom wavelengths with comparable performance. Isolation bandwidths up to ∼100 nm can be achieved simultaneously at both visible and telecom wavelengths, limited only by the modulation bandwidth. Our device’s dual-band isolation, high flexibility, and real-time tunability can enable novel non-reciprocal functionality on integrated photonic platforms.more » « less
-
Abstract Silicon is the ideal material for building electronic and photonic circuits at scale. Integrated photonic quantum technologies in silicon offer a promising path to scaling by leveraging advanced semiconductor manufacturing and integration capabilities. However, the lack of deterministic quantum light sources and strong photon-photon interactions in silicon poses a challenge to scalability. In this work, we demonstrate an indistinguishable photon source in silicon photonics based on an artificial atom. We show that a G center in a silicon waveguide can generate high-purity telecom-band single photons. We perform high-resolution spectroscopy and time-delayed two-photon interference to demonstrate the indistinguishability of single photons emitted from a G center in a silicon waveguide. Our results show that artificial atoms in silicon photonics can source single photons suitable for photonic quantum networks and processors.more » « less
-
Many uses of lasers place the highest importance on access to specific wavelength bands. For example, mobilizing optical-atomic clocks for a leap in sensing requires compact lasers at frequencies spread across the visible and near-infrared. Integrated photonics enables high-performance, scalable laser platforms. However, customizing laser-gain media to support wholly new bands is challenging and often prohibitively mismatched in scalability to early quantum-based sensing and information systems. Here, we demonstrate a tantalum pentoxide microresonator optical-parametric oscillator (OPO) that converts a pump laser to an output wave within a frequency span exceeding an octave. We control phase matching for oscillation by nanopatterning the microresonator to open a photonic-crystal bandgap on the mode of the pump laser. The photonic crystal splits only the pump mode and preserves the broader mode structure of the resonator, thus affording a single parameter to control output waves across the octave span using a nearly fixed frequency pump laser. We also demonstrate tuning the oscillator in free-spectral-range steps, more finely with temperature, and minimal additive frequency noise of the laser-conversion process. Our work shows that nanophotonic structures offer control of laser conversion in microresonators, bridging phase-matching of nonlinear optics and application requirements for laser designs.more » « less
An official website of the United States government
