Digital holographic microscopy (DHM) is a cutting-edge interferometric technique to recover the complex wavefield scattered by microscopic samples from digitally recorded intensity patterns. In off-axis DHM, the challenge is digitally generating the reference wavefront replica to compensate for the tilt between the interfering waves. Current methods to estimate the reference wavefront's parameters rely on brute-force grid searches or heuristics algorithms. Whereas brute-forced searches are time-consuming and impractical for video-rate quantitative phase imaging and analysis, applying heuristics methods in holographic videos is limited since the phase background level occasionally changes between frames. A semi-heuristic phase compensation (SHPC) algorithm is proposed to address these challenges to reconstruct phase images with minimum distortion in the full field-of-view (FOV) from holograms recorded by a telecentric off-axis digital holographic microscope. The method is tested with a USAF test target, smearing red blood cells and alive human sperm. The SHPC method provides accurate phase maps as the reference brute-force method but with a 92-fold reduction in processing time. Furthermore, this method was tested for reconstructing experimental holographic videos of dynamic specimens, obtaining stable phase values and minimal differences in the background between frames. This proposed method provides state-of-the-art phase reconstructions with high accuracy and stability in holographic videos, allowing the successful XYZ tracking of single-moving sperm cells.
more »
« less
Fast-iterative automatic reconstruction method for quantitative phase image with reduced phase perturbations in off-axis digital holographic microscopy
This works presents a reconstruction algorithm to recover the complex object information for an off-axis digital holographic microscope (DHM) operating in the telecentric regimen. We introduce an automatic and fast method to minimize a cost function that finds the best numerical conjugated reference beam to compensate the filtered object information, eliminating any undesired phase perturbation due to the tilt between the reference and object waves. The novelties of the proposed approach, to the best of our knowledge, are a precise estimation of the interference angle between the object and reference waves, reconstructed phase images without phase perturbations, and reduced processing time. The method has been validated using a manufactured phase target and biological samples.
more »
« less
- Award ID(s):
- 2042563
- PAR ID:
- 10308319
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Applied Optics
- Volume:
- 60
- Issue:
- 32
- ISSN:
- 1559-128X; APOPAI
- Format(s):
- Medium: X Size: Article No. 10214
- Size(s):
- Article No. 10214
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Measuring speed is a critical factor to reduce motion artifacts for dynamic scene capture. Phase-shifting methods have the advantage of providing high-accuracy and dense 3D point clouds, but the phase unwrapping process affects the measurement speed. This paper presents an absolute phase unwrapping method capable of using only three speckle-embedded phase-shifted patterns for high-speed three-dimensional (3D) shape measurement on a single-camera, single-projector structured light system. The proposed method obtains the wrapped phase of the object from the speckle-embedded three-step phase-shifted patterns. Next, it utilizes the Semi-Global Matching (SGM) algorithm to establish the coarse correspondence between the image of the object with the embedded speckle pattern and the pre-obtained image of a flat surface with the same embedded speckle pattern. Then, a computational framework uses the coarse correspondence information to determine the fringe order pixel by pixel. The experimental results demonstrated that the proposed method can achieve high-speed and high-quality 3D measurements of complex scenes.more » « less
-
null (Ed.)Drilling and milling operations are material removal processes involved in everyday conventional productions, especially in the high-speed metal cutting industry. The monitoring of tool information (wear, dynamic behavior, deformation, etc.) is essential to guarantee the success of product fabrication. Many methods have been applied to monitor the cutting tools from the information of cutting force, spindle motor current, vibration, as well as sound acoustic emission. However, those methods are indirect and sensitive to environmental noises. Here, the in-process imaging technique that can capture the cutting tool information while cutting the metal was studied. As machinists judge whether a tool is worn-out by the naked eye, utilizing the vision system can directly present the performance of the machine tools. We proposed a phase shifted strobo-stereoscopic method (Figure 1) for three-dimensional (3D) imaging. The stroboscopic instrument is usually applied for the measurement of fast-moving objects. The operation principle is as follows: when synchronizing the frequency of the light source illumination and the motion of object, the object appears to be stationary. The motion frequency of the target is transferring from the count information of the encoder signals from the working rotary spindle. If small differences are added to the frequency, the object appears to be slowly moving or rotating. This effect can be working as the source for the phase-shifting; with this phase information, the target can be whole-view 3D reconstructed by 360 degrees. The stereoscopic technique is embedded with two CCD cameras capturing images that are located bilateral symmetrically in regard to the target. The 3D scene is reconstructed by the location information of the same object points from both the left and right images. In the proposed system, an air spindle was used to secure the motion accuracy and drilling/milling speed. As shown in Figure 2, two CCDs with 10X objective lenses were installed on a linear rail with rotary stages to capture the machine tool bit raw picture for further 3D reconstruction. The overall measurement process was summarized in the flow chart (Figure 3). As the count number of encoder signals is related to the rotary speed, the input speed (unit of RPM) was set as the reference signal to control the frequency (f0) of the illumination of the LED. When the frequency was matched with the reference signal, both CCDs started to gather the pictures. With the mismatched frequency (Δf) information, a sequence of images was gathered under the phase-shifted process for a whole-view 3D reconstruction. The study in this paper was based on a 3/8’’ drilling tool performance monitoring. This paper presents the principle of the phase-shifted strobe-stereoscopic 3D imaging process. A hardware set-up is introduced, , as well as the 3D imaging algorithm. The reconstructed image analysis under different working speeds is discussed, the reconstruction resolution included. The uncertainty of the imaging process and the built-up system are also analyzed. As the input signal is the working speed, no other information from other sources is required. This proposed method can be applied as an on-machine or even in-process metrology. With the direct method of the 3D imaging machine vision system, it can directly offer the machine tool surface and fatigue information. This presented method can supplement the blank for determining the performance status of the machine tools, which further guarantees the fabrication process.more » « less
-
This paper presents an absolute phase unwrapping method for high-speed three-dimensional (3D) shape measurement. This method uses three phase-shifted patterns and one binary random pattern on a single-camera, single-projector structured light system. We calculate the wrapped phase from phase-shifted images and determine the coarse correspondence through the digital image correlation (DIC) between the captured binary random pattern of the object and the pre-captured binary random pattern of a flat surface. We then developed a computational framework to determine fringe order number pixel by pixel using the coarse correspondence information. Since only one additional pattern is used, the proposed method can be used for high-speed 3D shape measurement. Experimental results successfully demonstrated that the proposed method can achieve high-speed and high-quality measurement of complex scenes.more » « less
-
Commonly used methods for defect localization in structures are based on velocity differences (VD) or amplitude ratio (AR) (or attenuation due to scattering) measured along different sensing paths between a reference system and a defective system. A high value on a sensing path indicates a higher probability of the presence of defect on that path. We introduce an alternative approach based on the newly developed topological acoustic (TA) sensing technique for localizing defects in plate structures using Lamb waves. TA sensing exploits changes in geometric phase of acoustic waves to detect perturbations in the supporting medium. This approach uses a geometric phase change – index (GPC-I), a measure of the geometry of the acoustic field averaged over a spectral domain, as detection metric in lieu of VD or AR. Calculations based on the finite element method (FEM) in Abaqus/CAE software verifies the effectiveness of the proposed GPC-I-based defect localization method. Randomly located defects on the surface of a plate are localized with higher sensitivity and accuracy, by the GPC-I method in comparison to VD or AR-based methods.more » « less
An official website of the United States government
