skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Semi-heuristic phase compensation in digital holographic microscopy for stable and accurate quantitative phase imaging of moving objects
Digital holographic microscopy (DHM) is a cutting-edge interferometric technique to recover the complex wavefield scattered by microscopic samples from digitally recorded intensity patterns. In off-axis DHM, the challenge is digitally generating the reference wavefront replica to compensate for the tilt between the interfering waves. Current methods to estimate the reference wavefront's parameters rely on brute-force grid searches or heuristics algorithms. Whereas brute-forced searches are time-consuming and impractical for video-rate quantitative phase imaging and analysis, applying heuristics methods in holographic videos is limited since the phase background level occasionally changes between frames. A semi-heuristic phase compensation (SHPC) algorithm is proposed to address these challenges to reconstruct phase images with minimum distortion in the full field-of-view (FOV) from holograms recorded by a telecentric off-axis digital holographic microscope. The method is tested with a USAF test target, smearing red blood cells and alive human sperm. The SHPC method provides accurate phase maps as the reference brute-force method but with a 92-fold reduction in processing time. Furthermore, this method was tested for reconstructing experimental holographic videos of dynamic specimens, obtaining stable phase values and minimal differences in the background between frames. This proposed method provides state-of-the-art phase reconstructions with high accuracy and stability in holographic videos, allowing the successful XYZ tracking of single-moving sperm cells.  more » « less
Award ID(s):
2042563
PAR ID:
10487526
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optics and Lasers in Engineering
Date Published:
Journal Name:
Optics and Lasers in Engineering
Volume:
174
Issue:
C
ISSN:
0143-8166
Page Range / eLocation ID:
107937
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The conventional reconstruction method of off-axis digital holographic microscopy (DHM) relies on computational processing that involves spatial filtering of the sample spectrum and tilt compensation between the interfering waves to accurately reconstruct the phase of a biological sample. Additional computational procedures such as numerical focusing may be needed to reconstruct free-of-distortion quantitative phase images based on the optical configuration of the DHM system. Regardless of the implementation, any DHM computational processing leads to long processing times, hampering the use of DHM for video-rate renderings of dynamic biological processes. In this study, we report on a conditional generative adversarial network (cGAN) for robust and fast quantitative phase imaging in DHM. The reconstructed phase images provided by the GAN model present stable background levels, enhancing the visualization of the specimens for different experimental conditions in which the conventional approach often fails. The proposed learning-based method was trained and validated using human red blood cells recorded on an off-axis Mach–Zehnder DHM system. After proper training, the proposed GAN yields a computationally efficient method, reconstructing DHM images seven times faster than conventional computational approaches. 
    more » « less
  2. Digital holographic microscopy (DHM) enables the three-dimensional (3D) reconstruction of quantitative phase distributions from a defocused hologram. Traditional computational algorithms follow a sequential approach in which one first reconstructs the complex amplitude distribution and later applies focusing algorithms to provide an in-focus phase map. In this work, we have developed a synergistic computational framework to compensate for the linear tilt introduced in off-axis DHM systems and autofocus the defocused holograms by minimizing a cost function, providing in-focus reconstructed phase images without phase distortions. The proposed computational tool has been validated in defocused holograms of human red blood cells and three-dimensional images of dynamic sperm cells. 
    more » « less
  3. This works presents a reconstruction algorithm to recover the complex object information for an off-axis digital holographic microscope (DHM) operating in the telecentric regimen. We introduce an automatic and fast method to minimize a cost function that finds the best numerical conjugated reference beam to compensate the filtered object information, eliminating any undesired phase perturbation due to the tilt between the reference and object waves. The novelties of the proposed approach, to the best of our knowledge, are a precise estimation of the interference angle between the object and reference waves, reconstructed phase images without phase perturbations, and reduced processing time. The method has been validated using a manufactured phase target and biological samples. 
    more » « less
  4. We present a fast algorithm for accurate phase compensation of holographic videos of dynamic phenomena recorded in a digital holographic microscope. The proposal is tested with human sperm and red blood cell samples. 
    more » « less
  5. We have developed a joint phase compensation and autofocusing method for telecentric off-axis Digital Holographic Microscopy (DHM), providing in-focus reconstructed phase images without phase distortions. 
    more » « less