We explore basic mechanisms for the instability of finite-amplitude interfacial gravity waves through a two-dimensional linear stability analysis of the periodic and irrotational plane motion of the interface between two unbounded homogeneous fluids of different density in the absence of background currents. The flow domains are conformally mapped into two half-planes, where the time-varying interface is always mapped onto the real axis. This unsteady conformal mapping technique with a suitable representation of the interface reduces the linear stability problem to a generalized eigenvalue problem, and allows us to accurately compute the growth rates of unstable disturbances superimposed on steady waves for a wide range of parameters. Numerical results show that the wave-induced Kelvin–Helmholtz (KH) instability due to the tangential velocity jump across the interface produced by the steady waves is the major instability mechanism. Any disturbances whose dominant wavenumbers are greater than a critical value grow exponentially. This critical wavenumber that depends on the steady wave steepness and the density ratio can be approximated by a local KH stability analysis, where the spatial variation of the wave-induced currents is neglected. It is shown, however, that the growth rates need to be found numerically with care and the successive collisions of eigenvalues result in the wave-induced KH instability. In addition, the present study extends the previous results for the small-wavenumber instability, such as modulational instability, of relatively small-amplitude steady waves to finite-amplitude ones.
more »
« less
Instability of a planar fluid interface under a tangential electric field in a stagnation point flow
The interface between two immiscible fluids can become unstable under the effect of an imposed tangential electric field along with a stagnation point flow. This canonical situation, which arises in a wide range of electrohydrodynamic systems including at the equator of electrified droplets, can result in unstable interface deflections where the perturbed interface gets drawn along the extensional axis of the flow while experiencing strong charge build-up. Here, we present analytical and numerical analyses of the stability of a planar interface separating two immiscible fluid layers subject to a tangential electric field and a stagnation point flow. The interfacial charge dynamics is captured by a conservation equation accounting for Ohmic conduction, advection by the flow and finite charge relaxation. Using this model, we perform a local linear stability analysis in the vicinity of the stagnation point to study the behaviour of the system in terms of the relevant dimensionless groups of the problem. The local theory is complemented with a numerical normal-mode linear stability analysis based on the full system of equations and boundary conditions using the boundary element method. Our analysis demonstrates the subtle interplay of charge convection and conduction in the dynamics of the system, which oppose one another in the dominant unstable eigenmode. Finally, numerical simulations of the full nonlinear problem demonstrate how the coupling of flow and interfacial charge dynamics can give rise to nonlinear phenomena such as tip formation and the growth of charge density shocks.
more »
« less
- Award ID(s):
- 1705377
- PAR ID:
- 10308522
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 931
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present a rigorous analysis of the transient evolution of nearly circular bilayer interfaces evolving under the thin interface limit, ε ≪ 1, of the mass preserving L2-gradient flow of the strong scaling of the functionalized Cahn–Hilliard equation. For a domain Ω ⊂ R2 we construct a bilayer manifold with boundary comprised of quasi-equilibria of the flow and a projection onto the manifold that associates functions u in an H2 tubular neighborhood of the manifold with an interface Γ embedded in Ω. The linearization of the flow about the manifold does not present a clear spectral separation of modes normal and tangential to the manifold. The dimension of the parameterization of the interfaces and the bilayer manifold controls both the normal coercivity of the manifold and the coupling between normal and tangential modes, both of which increase with this dimension. The key step in the analysis is the identification of a range of dimensions in which coercivity dominates the coupling, permitting the closure of the nonlinear estimates that establish the asymptotic stability of the manifold. Orbits originating in a thin, forward invariant, tubular neighborhood ultimately converge to an equilibrium associated to a circular interface. Projections of these orbits yield interfacial evolution equivalent at leading order to the regularized curve-lengthening motion characterized by normal motion against mean curvature, regularized by a higher order Willmore expression. The curve lengthening is driven by absorption of excess mass from the regions of Ω away from the interface, leading to high dimensional dynamics that are ill-posed in the ε → 0+ limit.more » « less
-
This study explores the Faraday instability as a mechanism to enhance heat transfer in two-phase systems by exciting interfacial waves through resonance. The approach is particularly applicable to reduced-gravity environments where buoyancy-driven convection is ineffective. A reduced-order model, based on a weighted residual integral boundary layer method, is used to predict interfacial dynamics and heat flux under vertical oscillations with a stabilising thermal gradient. The model employs long-wave and one-way coupling approximations to simplify the governing equations. Linear stability theory informs the oscillation parameters for subsequent nonlinear simulations, which are then qualitatively compared against experiments conducted under Earth’s gravity. Experimental results show up to a 4.5-fold enhancement in heat transfer over pure conduction. Key findings include: (i) reduced gravity lowers interfacial stability, promoting mixing and heat transfer; and (ii) oscillation-induced instability significantly improves heat transport under Earth’s gravity. Theoretical predictions qualitatively validate experimental trends in wavelength-dependent enhancement of heat transfer. Quantitative discrepancies between model and experiment are rationalised by model assumptions, such as neglecting higher-order inertial terms, idealised boundary conditions, and simplified interface dynamics. These limitations lead to underprediction of interface deflection and heat flux. Nevertheless, the study underscores the value of Faraday instability as a means to boost heat transfer in reduced gravity, with implications for thermal management in space applications.more » « less
-
null (Ed.)In this work, we study the nonlinear travelling waves in density stratified fluids with piecewise-linear shear currents. Beginning with the formulation of the water-wave problem due to Ablowitz et al. ( J. Fluid Mech. , vol. 562, 2006, pp. 313–343), we extend the work of Ashton & Fokas ( J. Fluid Mech. , vol. 689, 2011, pp. 129–148) and Haut & Ablowitz ( J. Fluid Mech. , vol. 631, 2009, pp. 375–396) to examine the interface between two fluids of differing densities and varying linear shear. We derive a systems of equations depending only on variables at the interface, and numerically solve for periodic travelling wave solutions using numerical continuation. Here, we consider only branches which bifurcate from solutions where there is no slip in the tangential velocity at the interface for the trivial flow. The spectral stability of these solutions is then determined using a numerical Fourier–Floquet technique. We find that the strength of the linear shear in each fluid impacts the stability of the corresponding travelling wave solutions. Specifically, opposing shears may amplify or suppress instabilities.more » « less
-
The flow in a Hele-Shaw cell with a time-increasing gap poses a unique shrinking interface problem. When the upper plate of the cell is lifted perpendicularly at a prescribed speed, the exterior less viscous fluid penetrates the interior more viscous fluid, which generates complex, time-dependent interfacial patterns through the Saffman–Taylor instability. The pattern formation process sensitively depends on the lifting speed and is still not fully understood. For some lifting speeds, such as linear or exponential speed, the instability is transient and the interface eventually shrinks as a circle. However, linear stability analysis suggests there exist shape invariant shrinking patterns if the gap $b(t)$ is increased more rapidly: $$b(t)=\left (1-({7}/{2})\tau \mathcal {C} t\right )^{-{2}/{7}}$$ , where $$\tau$$ is the surface tension and $$\mathcal {C}$$ is a function of the interface perturbation mode $$k$$ . Here, we use a spectrally accurate boundary integral method together with an efficient time adaptive rescaling scheme, which for the first time makes it possible to explore the nonlinear limiting dynamical behaviour of a vanishing interface. When the gap is increased at a constant rate, our numerical results quantitatively agree with experimental observations (Nase et al. , Phys. Fluids , vol. 23, 2011, 123101). When we use the shape invariant gap $b(t)$ , our nonlinear results reveal the existence of $$k$$ -fold dominant, one-dimensional, web-like networks, where the fractal dimension is reduced to almost unity at late times. We conclude by constructing a morphology diagram for pattern selection that relates the dominant mode $$k$$ of the vanishing interface and the control parameter $$\mathcal {C}$$ .more » « less
An official website of the United States government

