skip to main content


Title: Instability of a planar fluid interface under a tangential electric field in a stagnation point flow
The interface between two immiscible fluids can become unstable under the effect of an imposed tangential electric field along with a stagnation point flow. This canonical situation, which arises in a wide range of electrohydrodynamic systems including at the equator of electrified droplets, can result in unstable interface deflections where the perturbed interface gets drawn along the extensional axis of the flow while experiencing strong charge build-up. Here, we present analytical and numerical analyses of the stability of a planar interface separating two immiscible fluid layers subject to a tangential electric field and a stagnation point flow. The interfacial charge dynamics is captured by a conservation equation accounting for Ohmic conduction, advection by the flow and finite charge relaxation. Using this model, we perform a local linear stability analysis in the vicinity of the stagnation point to study the behaviour of the system in terms of the relevant dimensionless groups of the problem. The local theory is complemented with a numerical normal-mode linear stability analysis based on the full system of equations and boundary conditions using the boundary element method. Our analysis demonstrates the subtle interplay of charge convection and conduction in the dynamics of the system, which oppose one another in the dominant unstable eigenmode. Finally, numerical simulations of the full nonlinear problem demonstrate how the coupling of flow and interfacial charge dynamics can give rise to nonlinear phenomena such as tip formation and the growth of charge density shocks.  more » « less
Award ID(s):
1705377
NSF-PAR ID:
10308522
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
931
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We explore basic mechanisms for the instability of finite-amplitude interfacial gravity waves through a two-dimensional linear stability analysis of the periodic and irrotational plane motion of the interface between two unbounded homogeneous fluids of different density in the absence of background currents. The flow domains are conformally mapped into two half-planes, where the time-varying interface is always mapped onto the real axis. This unsteady conformal mapping technique with a suitable representation of the interface reduces the linear stability problem to a generalized eigenvalue problem, and allows us to accurately compute the growth rates of unstable disturbances superimposed on steady waves for a wide range of parameters. Numerical results show that the wave-induced Kelvin–Helmholtz (KH) instability due to the tangential velocity jump across the interface produced by the steady waves is the major instability mechanism. Any disturbances whose dominant wavenumbers are greater than a critical value grow exponentially. This critical wavenumber that depends on the steady wave steepness and the density ratio can be approximated by a local KH stability analysis, where the spatial variation of the wave-induced currents is neglected. It is shown, however, that the growth rates need to be found numerically with care and the successive collisions of eigenvalues result in the wave-induced KH instability. In addition, the present study extends the previous results for the small-wavenumber instability, such as modulational instability, of relatively small-amplitude steady waves to finite-amplitude ones. 
    more » « less
  2. Electrohydrodynamics of drops is a classic fluid mechanical problem where deformations and microscale flows are generated by application of an external electric field. In weak fields, electric stresses acting on the drop surface drive quadrupolar flows inside and outside and cause the drop to adopt a steady axisymmetric shape. This phenomenon is best explained by the leaky-dielectric model under the premise that a net surface charge is present at the interface while the bulk fluids are electroneutral. In the case of dielectric drops, increasing the electric field beyond a critical value can cause the drop to start rotating spontaneously and assume a steady tilted shape. This symmetry-breaking phenomenon, called Quincke rotation, arises due to the action of the interfacial electric torque countering the viscous torque on the drop, giving rise to steady rotation in sufficiently strong fields. Here, we present a small-deformation theory for the electrohydrodynamics of dielectric drops for the complete Melcher–Taylor leaky-dielectric model in three dimensions. Our theory is valid in the limits of strong capillary forces and highly viscous drops and is able to capture the transition to Quincke rotation. A coupled set of nonlinear ordinary differential equations for the induced dipole moments and shape functions are derived whose solution matches well with experimental results in the appropriate small-deformation regime. Retention of both the straining and rotational components of the flow in the governing equation for charge transport enables us to perform a linear stability analysis and derive a criterion for the applied electric field strength that must be overcome for the onset of Quincke rotation of a viscous drop. 
    more » « less
  3. We present a rigorous analysis of the transient evolution of nearly circular bilayer interfaces evolving under the thin interface limit, ε ≪ 1, of the mass preserving L2-gradient flow of the strong scaling of the functionalized Cahn–Hilliard equation. For a domain Ω ⊂ R2 we construct a bilayer manifold with boundary comprised of quasi-equilibria of the flow and a projection onto the manifold that associates functions u in an H2 tubular neighborhood of the manifold with an interface Γ embedded in Ω. The linearization of the flow about the manifold does not present a clear spectral separation of modes normal and tangential to the manifold. The dimension of the parameterization of the interfaces and the bilayer manifold controls both the normal coercivity of the manifold and the coupling between normal and tangential modes, both of which increase with this dimension. The key step in the analysis is the identification of a range of dimensions in which coercivity dominates the coupling, permitting the closure of the nonlinear estimates that establish the asymptotic stability of the manifold. Orbits originating in a thin, forward invariant, tubular neighborhood ultimately converge to an equilibrium associated to a circular interface. Projections of these orbits yield interfacial evolution equivalent at leading order to the regularized curve-lengthening motion characterized by normal motion against mean curvature, regularized by a higher order Willmore expression. The curve lengthening is driven by absorption of excess mass from the regions of Ω away from the interface, leading to high dimensional dynamics that are ill-posed in the ε → 0+ limit. 
    more » « less
  4. The flow in a Hele-Shaw cell with a time-increasing gap poses a unique shrinking interface problem. When the upper plate of the cell is lifted perpendicularly at a prescribed speed, the exterior less viscous fluid penetrates the interior more viscous fluid, which generates complex, time-dependent interfacial patterns through the Saffman–Taylor instability. The pattern formation process sensitively depends on the lifting speed and is still not fully understood. For some lifting speeds, such as linear or exponential speed, the instability is transient and the interface eventually shrinks as a circle. However, linear stability analysis suggests there exist shape invariant shrinking patterns if the gap $b(t)$ is increased more rapidly: $b(t)=\left (1-({7}/{2})\tau \mathcal {C} t\right )^{-{2}/{7}}$ , where $\tau$ is the surface tension and $\mathcal {C}$ is a function of the interface perturbation mode $k$ . Here, we use a spectrally accurate boundary integral method together with an efficient time adaptive rescaling scheme, which for the first time makes it possible to explore the nonlinear limiting dynamical behaviour of a vanishing interface. When the gap is increased at a constant rate, our numerical results quantitatively agree with experimental observations (Nase et al. , Phys. Fluids , vol. 23, 2011, 123101). When we use the shape invariant gap $b(t)$ , our nonlinear results reveal the existence of $k$ -fold dominant, one-dimensional, web-like networks, where the fractal dimension is reduced to almost unity at late times. We conclude by constructing a morphology diagram for pattern selection that relates the dominant mode $k$ of the vanishing interface and the control parameter $\mathcal {C}$ . 
    more » « less
  5. Summary

    We present a spatially varying Robin interface condition for solving fluid‐structure interaction problems involving incompressible fluid flows and nonuniform flexible structures. Recent studies have shown that for uniform structures with constant material and geometric properties, a constant one‐parameter Robin interface condition can improve the stability and accuracy of partitioned numerical solution procedures. In this work, we generalize the parameter to a spatially varying function that depends on the structure's local material and geometric properties, without varying the exact solution of the coupled fluid‐structure system. We present an algorithm to implement the Robin interface condition in an embedded boundary method for coupling a projection‐based incompressible viscous flow solver with a nonlinear finite element structural solver. We demonstrate the numerical effects of the spatially varying Robin interface condition using two example problems: a simplified model problem featuring a nonuniform Euler‐Bernoulli beam interacting with an inviscid flow and a generalized Turek‐Hron problem featuring a nonuniform, highly flexible beam interacting with a viscous laminar flow. Both cases show that a spatially varying Robin interface condition can clearly improve numerical accuracy (by up to two orders of magnitude in one instance) for the same computational cost. Using the second example problem, we also demonstrate and compare two models for determining the local value of the combination function in the Robin interface condition.

     
    more » « less