The environment has constantly shaped plant genomes, but the genetic bases underlying how plants adapt to environmental influences remain largely unknown. We constructed a high-density genomic variation map of 263 geographically representative peach landraces and wild relatives. A combination of whole-genome selection scans and genome-wide environmental association studies (GWEAS) was performed to reveal the genomic bases of peach adaptation to diverse climates. A total of 2092 selective sweeps that underlie local adaptation to both mild and extreme climates were identified, including 339 sweeps conferring genomic pattern of adaptation to high altitudes. Using genome-wide environmental association studies (GWEAS), a total of 2755 genomic loci strongly associated with 51 specific environmental variables were detected. The molecular mechanism underlying adaptive evolution of high drought, strong UVB, cold hardiness, sugar content, flesh color, and bloom date were revealed. Finally, based on 30 yr of observation, a candidate gene associated with bloom date advance, representing peach responses to global warming, was identified. Collectively, our study provides insights into molecular bases of how environments have shaped peach genomes by natural selection and adds candidate genes for future studies on evolutionary genetics, adaptation to climate changes, and breeding.
more »
« less
Dissecting the Polygenic Basis of Cold Adaptation Using Genome-Wide Association of Traits and Environmental Data in Douglas-fir
Understanding the genomic and environmental basis of cold adaptation is key to understand how plants survive and adapt to different environmental conditions across their natural range. Univariate and multivariate genome-wide association (GWAS) and genotype-environment association (GEA) analyses were used to test associations among genome-wide SNPs obtained from whole-genome resequencing, measures of growth, phenology, emergence, cold hardiness, and range-wide environmental variation in coastal Douglas-fir (Pseudotsuga menziesii). Results suggest a complex genomic architecture of cold adaptation, in which traits are either highly polygenic or controlled by both large and small effect genes. Newly discovered associations for cold adaptation in Douglas-fir included 130 genes involved in many important biological functions such as primary and secondary metabolism, growth and reproductive development, transcription regulation, stress and signaling, and DNA processes. These genes were related to growth, phenology and cold hardiness and strongly depend on variation in environmental variables such degree days below 0c, precipitation, elevation and distance from the coast. This study is a step forward in our understanding of the complex interconnection between environment and genomics and their role in cold-associated trait variation in boreal tree species, providing a baseline for the species’ predictions under climate change.
more »
« less
- Award ID(s):
- 1744309
- PAR ID:
- 10308621
- Date Published:
- Journal Name:
- Genes
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2073-4425
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Local adaptation to climate is common in plant species and has been studied in a range of contexts, from improving crop yields to predicting population maladaptation to future conditions. The genomic era has brought new tools to study this process, which was historically explored through common garden experiments.In this study, we combine genomic methods and common gardens to investigate local adaptation in red spruce and identify environmental gradients and loci involved in climate adaptation. We first use climate transfer functions to estimate the impact of climate change on seedling performance in three common gardens. We then explore the use of multivariate gene–environment association methods to identify genes underlying climate adaptation, with particular attention to the implications of conducting genome scans with and without correction for neutral population structure.This integrative approach uncovered phenotypic evidence of local adaptation to climate and identified a set of putatively adaptive genes, some of which are involved in three main adaptive pathways found in other temperate and boreal coniferous species: drought tolerance, cold hardiness, and phenology. These putatively adaptive genes segregated into two ‘modules’ associated with different environmental gradients.This study nicely exemplifies the multivariate dimension of adaptation to climate in trees.more » « less
-
Abstract Severe and frequent heat and drought events challenge the survival and development of long-generation trees. In this study, we investigated the genomic basis of heat tolerance, water use efficiency, and growth by performing genome-wide association studies in coastal Douglas-fir (Pseudotsuga menziesii) and intervarietal (menziesii x glauca) hybrid seedlings. GWAS results identified 32 candidate genes involved in primary and secondary metabolism, abiotic stress and signaling, among other functions. Water use efficiency (inferred from carbon isotope discrimination), photosynthetic capacity (inferred from %N), height, and heat tolerance (inferred from electrolyte leakage in a heat stress experiment) were significantly different among Douglas-fir families and varieties. High elevation seed sources had increased water use efficiency, which could be a result of higher photosynthetic capacity. Similarly, families with greater heat tolerance also had higher water use efficiency and slower growth, suggesting a conservative growth strategy. Intervarietal hybrids showed increased heat tolerance (lower electrolyte leakage at 50 oC and 55 oC) and higher water use efficiency compared to coastal families, suggesting hybridization might be a source of pre-adapted alleles to warming climates and should be considered for large-scale reforestation projects under increasingly arid conditions.more » « less
-
SUMMARY Drought is a major limitation for survival and growth in plants. With more frequent and severe drought episodes occurring due to climate change, it is imperative to understand the genomic and physiological basis of drought tolerance to be able to predict how species will respond in the future. In this study, univariate and multitrait multivariate genome‐wide association study methods were used to identify candidate genes in two iconic and ecosystem‐dominating species of the western USA, coast redwood and giant sequoia, using 10 drought‐related physiological and anatomical traits and genome‐wide sequence‐capture single nucleotide polymorphisms. Population‐level phenotypic variation was found in carbon isotope discrimination, osmotic pressure at full turgor, xylem hydraulic diameter, and total area of transporting fibers in both species. Our study identified new 78 new marker × trait associations in coast redwood and six in giant sequoia, with genes involved in a range of metabolic, stress, and signaling pathways, among other functions. This study contributes to a better understanding of the genomic basis of drought tolerance in long‐generation conifers and helps guide current and future conservation efforts in the species.more » « less
-
Holland, J. (Ed.)Abstract Douglas-fir (Pseudotsuga menziesii) is native to western North America. It grows in a wide range of environmental conditions and is an important timber tree. Although there are several studies on the gene expression responses of Douglas-fir to abiotic cues, the absence of high-quality transcriptome and genome data is a barrier to further investigation. Like for most conifers, the available transcriptome and genome reference dataset for Douglas-fir remains fragmented and requires refinement. We aimed to generate a highly accurate, and complete reference transcriptome and genome annotation. We deep-sequenced the transcriptome of Douglas-fir needles from seedlings that were grown under nonstress control conditions or a combination of heat and drought stress conditions using long-read (LR) and short-read (SR) sequencing platforms. We used 2 computational approaches, namely de novo and genome-guided LR transcriptome assembly. Using the LR de novo assembly, we identified 1.3X more high-quality transcripts, 1.85X more “complete” genes, and 2.7X more functionally annotated genes compared to the genome-guided assembly approach. We predicted 666 long noncoding RNAs and 12,778 unique protein-coding transcripts including 2,016 putative transcription factors. We leveraged the LR de novo assembled transcriptome with paired-end SR and a published single-end SR transcriptome to generate an improved genome annotation. This was conducted with BRAKER2 and refined based on functional annotation, repetitive content, and transcriptome alignment. This high-quality genome annotation has 51,419 unique gene models derived from 322,631 initial predictions. Overall, our informatics approach provides a new reference Douglas-fir transcriptome assembly and genome annotation with considerably improved completeness and functional annotation.more » « less
An official website of the United States government

