skip to main content


Title: An Accessible Portal to Teach Computer Science Modules to Typical and Special Needs Children: A Prototype
Society’s increased reliance on technology has simultaneously increased the demand for people who can develop and design these new advancements. This has led to an influx of students looking to learn how to code and gain the technological skill set that is currently among the most marketable. Learning to code is challenging; without the right tools, resources, and assistance, it can be tough to build the foundation needed to understand key computer science fundamentals. The existing web platforms focused on assisting K-12 learners are competitive from an educational and technical perspective. There is a huge lack of virtual educational platforms that can deliver resources to students with disabilities through innovative accessible features and provide guidance to K-12 teachers that are trying to support this area. This lack of guidance is especially evident when examining resources available to teachers about increasing access and engagement of struggling learners including students with disabilities. The motivation of this paper is to introduce a prototype of a centralized portal, Accessible Virtual Learning, that implements user experience strategies and accessible usability principles aiming to be accessible to any student and also educators who need guidance on finding suitable materials. The success of this portal relies heavily on its ability to allow teachers and self-directed learners to facilitate curriculums effectively while maximizing student engagement, ease of learning, and digital assistance for students at various ages with different learning abilities, both physical and cognitive.  more » « less
Award ID(s):
1842092
NSF-PAR ID:
10308634
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
CENTRIC the International Conference on Advances in Humanoriented and Personalized Mechanisms Technologies and Services
ISSN:
2308-3492
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As K-12 engineering education becomes more ubiquitous in the U.S, increased attention has been paid to preparing the heterogeneous group of in-service teachers who have taken on the challenge of teaching engineering. Standards have emerged for professional development along with research on teacher learning in engineering that call for teachers to facilitate and support engineering learning environments. Given that many teachers may not have experienced engineering practice calls have been made to engage teaches K-12 teachers in the “doing” of engineering as part of their preparation. However, there is a need for research studying more specific nature of the “doing” and the instructional implications for engaging teachers in “doing” engineering. In general, to date, limited time and constrained resources necessitate that many professional development programs for K-12 teachers to engage participants in the same engineering activities they will enact with their students. While this approach supports teachers’ familiarity with curriculum and ability to anticipate students’ ideas, there is reason to believe that these experiences may not be authentic enough to support teachers in developing a rich understanding of the “doing” of engineering. K-12 teachers are often familiar with the materials and curricular solutions, given their experiences as adults, which means that engaging in the same tasks as their students may not be challenging enough to develop their understandings about engineering. This can then be consequential for their pedagogy: In our prior work, we found that teachers’ linear conceptions of the engineering design process can limit them from recognizing and supporting student engagement in productive design practices. Research on the development of engineering design practices with adults in undergraduate and professional engineering settings has shown significant differences in how adults approach and understand problems. Therefore, we conjectured that engaging teachers in more rigorous engineering challenges designed for adult engineering novices would more readily support their developing rich understandings of the ways in which professional engineers move through the design process. We term this approach meaningful engineering for teachers, and it is informed by work in science education that highlights the importance of learning environments creating a need for learners to develop and engage in disciplinary practices. We explored this approach to teachers’ professional learning experiences in doing engineering in an online graduate program for in-service teachers in engineering education at Tufts University entitled the Teacher Engineering Education Program (teep.tufts.edu). In this exploratory study, we asked: 1. How did teachers respond to engaging in meaningful engineering for teachers in the TEEP program? 2. What did teachers identify as important things they learned about engineering content and pedagogy? This paper focuses on one theme that emerged from teachers’ reflections. Our analysis found that teachers reported that meaningful engineering supported their development of epistemic empathy (“the act of understanding and appreciating someone's cognitive and emotional experience within an epistemic activity”) as a result of their own affective experiences in doing engineering that required significant iteration as well as using novel robotic materials. We consider how epistemic empathy may be an important aspect of teacher learning in K-12 engineering education and the potential implications for designing engineering teacher education. 
    more » « less
  2. The educational applications of extended reality (XR) modalities, including virtual reality (VR), augmented reality (AR), and mixed reality (MR), have increased significantly over the last ten years. Many educators within the Architecture, Engineering, and Construction (AEC) related degree programs see student benefits that could be derived from bringing these modalities into classrooms, which include but are not limited to: a better understanding of each of the subdisciplines and the coordination necessary between them, visualizing oneself as a professional in AEC, and visualization of difficult concepts to increase engagement, self-efficacy, and learning. These benefits, in turn, help recruitment and retention efforts for these degree programs. However, given the number of technologies available and the fact that they quickly become outdated, there is confusion about the definitions of the different XR modalities and their unique capabilities. This lack of knowledge, combined with limited faculty time and lack of financial resources, can make it overwhelming for educators to choose the right XR modality to accomplish particular educational objectives. There is a lack of guidance in the literature for AEC educators to consider various factors that affect the success of an XR intervention. Grounded in a comprehensive literature review and the educational framework of the Model of Domain Learning, this paper proposes a decision-making framework to help AEC educators select the appropriate technologies, platforms, and devices to use for various educational outcomes (e.g., learning, interest generation, engagement) considering factors such as budget, scalability, space/equipment needs, and the potential benefits and limitations of each XR modality. To this end, a comprehensive review of the literature was performed to decipher various definitions of XR modalities and how they have been previously utilized in AEC Education. The framework was then successfully validated at a summer camp in the School of Building Construction at Georgia Institute of Technology, highlighting the importance of using appropriate XR technologies depending on the educational context.

     
    more » « less
  3. Economically disadvantaged youth residing in mountain tourist communities represent an important and understudied rural population. These communities typically include a large percentage of children that are English language learners. Our NSF STEM Career Connections project, A Model for Preparing Economically-Disadvantaged Rural Youth for the Future STEM Workplace, investigates strategies that help middle school youth in these communities to envision a broader range of workforce opportunities, especially in STEM and computing careers. This poster highlights the initial findings of an innovative model that involves working with local schools and community partners to support the integration of local career contexts, engineering phenomena, 3D printing technologies, career connections, and mentorship into formal educational experiences to motivate and prepare rural youth for future STEM careers. We focus on select classrooms at two middle schools and describe the implementation of a novel 3D printing curriculum during the 2020-2021 school-year. Two STEM teachers implemented the five-week curriculum with approximately 300 students per quarter. To create a rich inquiry-driven learning environment, the curriculum uses an instructional design approach called storylining. This approach is intended to promote coherence, relevance, and meaning from the students’ perspectives by using students’ questions to drive investigations and lessons. Students worked towards answering the question: “How can we support animals with physical disabilities so they can perform daily activities independently?” Students engaged in the engineering design process by defining, developing, and optimizing solutions to develop and print prosthetic limbs for animals with disabilities using 3D modeling, a unique augmented reality application, and 3D printing. In order to embed connections to STEM careers and career pathways, some students received mentorship and guidance from local STEM professionals who work in related fields. This poster will describe the curriculum and its implementation across two quarters at two middle schools in the US rural mountain west, as well as the impact on students’ interest in STEM and computing careers. During the first quarter students engaged in the 3D printing curriculum, but did not have access to the STEM career and career pathway connections mentorship piece. During the second quarter, the project established a partnership with a local STEM business -- a medical research institute that utilizes 3D printing and scanning for creating human surgical devices and procedures -- to provide mentorship to the students. Volunteers from this institute served as ongoing mentors for the students in each classroom during the second quarter. The STEM mentors guided students through the process of designing, testing, and optimizing their 3D models and 3D printed prosthetics, providing insights into how students’ learning directly applies to the medical industry. Different forms of student data such as cognitive interviews and pre/post STEM interest and spatial thinking surveys were collected and analyzed to understand the benefits of the career connections mentorship component. Preliminary findings suggest the relationship between local STEM businesses and students is important to motivate youth from rural areas to see themselves being successful in STEM careers and helping them to realize the benefits of engaging with emerging engineering technologies. 
    more » « less
  4. Given the proliferation of makerspace experiences in K-12 education, there is a growing need to ensure accessibility for all learners, including those with disabilities and those at risk of academic failure. The limited research on these populations suggests that it is essential to examine how a broader range of learners participate in K-12 maker activities and any barriers that they face. We employed a cross-case qualitative methodology to investigate issues of participation and engagement by collaborating with four teachers who incorporated maker activities into STEM or science classes in four different middle schools. Across the four schools, teachers reported multiple challenges faced by learners including student-specific, instructional, and systemic barriers. Despites these challenges, however, we found evidence of students with disabilities meaningfully participating in maker activities. Implications for future research and practices are discussed from an ecological model perspective. 
    more » « less
  5. Context: Within higher education, reports show that approximately 6% of Australian college students and 13% of U.S. college students have identified as having a disability to their institution of higher education. Findings from research in K-12 education report that students with disabilities often leave secondary school with lower college aspirations and are discouraged from taking engineering-related courses. Those who do enrol are often not supported effectively and must navigate physical, cultural, and bureaucratic university systems in order to access resources necessary for success in school and work. This lack of support is problematic as cognitive, developmental, mental health, and physical disabilities can markedly shape the ways in which students perceive and experience school, form professional identities, and move into the engineering workforce. However, little work has explored professional identity development within this population, specifically within a single engineering discipline such as civil engineering. Purpose: To move beyond tolerance and actively embrace students with diverse perspectives in engineering higher education, the purpose of this study is to understand the ways in which undergraduate students who experience disability form professional identities as civil engineers. Approach: Drawing on the sensitizing concepts of identity saliency, intersectionality, and social identity theory, we utilize Constructivist Grounded Theory (GT) to explore the influences of and interactions among students' disability and professional identities within civil engineering. Semi-structured interviews, each lasting approximately 90 minutes, were conducted with undergraduate civil engineering students who identified as having a disability. Here, we present our findings from the initial and focused coding phases of our GT analysis. Results: Our analyses revealed two themes warranting further exploration: 1) varying levels of disability identity saliency in relation to the development of a professional identity; and 2) conflicting colloquial and individual conceptualizations of disability. Overall, it has been observed that students' experiences with and perceptions of these themes tend to vary based on characteristics of an experienced disability. Conclusions: Students with disabilities experience college - and form professional identities - in a variety of ways. While further research is required to delineate how disability shapes college students' professional identities and vice versa, gaining an understanding of student experiences can yield insights to help us create educational spaces that better allow students with disabilities to flourish in engineering and make engineering education more inclusive. 
    more » « less