skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Development of Gelatin-Coated Microspheres for Novel Bioink Design
A major challenge in tissue engineering is the formation of vasculature in tissue and organs. Recent studies have shown that positively charged microspheres promote vascularization, while also supporting the controlled release of bioactive molecules. This study investigated the development of gelatin-coated pectin microspheres for incorporation into a novel bioink. Electrospray was used to produce the microspheres. The process was optimized using Design-Expert® software. Microspheres underwent gelatin coating and EDC catalysis modifications. The results showed that the concentration of pectin solution impacted roundness and uniformity primarily, while flow rate affected size most significantly. The optimal gelatin concentration for microsphere coating was determined to be 0.75%, and gelatin coating led to a positively charged surface. When incorporated into bioink, the microspheres did not significantly alter viscosity, and they distributed evenly in bioink. These microspheres show great promise for incorporation into bioink for tissue engineering applications.  more » « less
Award ID(s):
2045738
PAR ID:
10308690
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Polymers
Volume:
13
Issue:
19
ISSN:
2073-4360
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Guy Van der Mooter (Ed.)
    The development of vascularized tissue is a substantial challenge within the field of tissue engineering and regenerative medicine. Studies have shown that positively-charged microspheres exhibit dual-functions: (1) facilitation of vascularization and (2) controlled release of bioactive compounds. In this study, gelatin-coated microspheres were produced and processed with either EDC or transglutaminase, two crosslinkers. The results indicated that the processing stages did not significantly impact the size of the microspheres. EDC and transglutaminase had different effects on surface morphology and microsphere stability in a simulated colonic environment. Incorporation of EGM and TGM into bioink did not negatively impact bioprintability (as indicated by density and kinematic viscosity), and the microspheres had a uniform distribution within the scaffold. These microspheres show great potential for tissue engineering applications. 
    more » « less
  2. This article belongs to the Special Issue Hydrogels with Appropriate/Tunable Properties for Biomedical Applications (Ed.)
    Pulmonary drug delivery via microspheres has gained growing interest as a noninvasive method for therapy. However, drug delivery through the lungs via inhalation faces great challenges due to the natural defense mechanisms of the respiratory tract, such as the removal or deactivation of drugs. This study aims to develop a natural polymer-based microsphere system with a diameter of around 3 μm for encapsulating pulmonary drugs and facilitating their delivery to the deep lungs. Pectin was chosen as the foundational material due to its biocompatibility and degradability in physiological environments. Electrospray was used to produce the pectin-based hydrogel microspheres, and Design-Expert software was used to optimize the production process for microsphere size and uniformity. The optimized conditions were determined to be as follows: pectin/PEO ratio of 3:1, voltage of 14.4 kV, distance of 18.2 cm, and flow rate of 0.95 mL/h. The stability and responsiveness of the pectin-based hydrogel microspheres can be altered through coatings such as gelatin. Furthermore, the potential of the microspheres for pulmonary drug delivery (i.e., their responsiveness to the deep lung environment) was investigated. Successfully coated microspheres with 0.75% gelatin in 0.3 M mannitol exhibited improved stability while retaining high responsiveness in the simulated lung fluid (Gamble’s solution). A gelatin-coated pectin-based microsphere system was developed, which could potentially be used for targeted drug delivery to reach the deep lungs and rapid release of the drug. 
    more » « less
  3. Inkjet-based bioprinting have been widely employed in a variety of applications in tissue engineering and drug screening and delivery. The typical bioink used in inkjet bioprinting consists of biological materials and living cells. During inkjet bioprinting, the cell-laden bioink is ejected out from the inkjet dispenser to form microspheres with cells encapsulated. The cell distribution within microspheres is defined as the distribution of cell number within the microspheres. The paper focuses on the effects of polymer concentration, excitation voltage, and cell concentration on the cell distribution within microspheres during inkjet printing of cell-laden bioink. The normal distribution has been utilized to fit the experimental results to obtain the mean and standard deviation of the distribution. It is found that the cell distribution within the microspheres increases with the increase of the cell concentration, sodium alginate concentration, and the excitation voltage. 
    more » « less
  4. Abstract Three-dimensional (3D) bioprinting has emerged as a powerful engineering approach for various tissue engineering applications, particularly for the development of 3D cellular structures with unique mechanical and/or biological properties. For the jammed gelatin microgel-gelatin solution composite bioink, comprising a discrete phase of microgels (enzymatically gelled gelatin microgels) and a cross-linkable continuous gelatin precursor solution-based phase containing transglutaminase (TG), its rheological properties and printability change gradually due to the TG enzyme-induced cross-linking process. The objective of this study is to establish a direct mapping between the printability of the gelatin microgel-gelatin solution based cross-linkable composite bioink and the TG concentration and cross-linking time, respectively. Due to the inclusion of TG in the composite bioink, the bioink starts cross-linking once prepared and is usually prepared right before a printing process. Herein, the bioink printability is evaluated based on the three metrics: injectability, feature formability, and process-induced cell injury. In this study, the rheological properties such as the storage modulus and viscosity have been first systematically investigated and predicted at different TG concentrations and times during the cross-linking process using the first-order cross-linking kinetics model. The storage modulus and viscosity have been satisfactorily modeled as exponential functions of the TG concentration and time with an experimentally calibrated cross-linking kinetic rate constant. Furthermore, the injectability, feature formability, and process-induced cell injury have been successfully correlated to the TG concentration and cross-linking time via the storage modulus, viscosity, and/or process-induced shear stress. By combing the good injectability, good feature formability, and satisfactory cell viability zones, a good printability zone (1.65, 0.61, and 0.31 h for the composite bioinks with 1.00, 2.00, and 4.00% w/v TG, respectively) has been established during the printing of mouse fibroblast-based 2% gelatin B microgel-3% gelatin B solution composite bioink. This printability zone approach can be extended to the use of other cross-linkable bioinks for bioprinting applications. 
    more » « less
  5. Abstract It is well‐known that tissue engineering scaffolds that feature highly interconnected and size‐adjustable micropores are oftentimes desired to promote cellular viability, motility, and functions. Unfortunately, the ability of precise control over the microporous structures within bioinks in a cytocompatible manner for applications in 3D bioprinting is generally lacking, until a method of micropore‐forming bioink based on gelatin methacryloyl (GelMA) was reported recently. This bioink took advantage of the unique aqueous two‐phase emulsion (ATPE) system, where poly(ethylene oxide) (PEO) droplets are utilized as the porogen. Considering the limitations associated with this very initial demonstration, this article has furthered the understanding of the micropore‐forming GelMA bioinks by conducting a systematic investigation into the additional GelMA types (porcine and fish, different methacryloyl‐modification degrees) and porogen types (PEO, poly(vinyl alcohol), and dextran), as well as the effects of the porogen concentrations and molecular weights on the properties of the GelMA‐based ATPE bioink system. This article exemplifies not only the significantly wider range of micropore sizes achievable and better emulsion stability, but also the improved suitability for both extrusion and digital light processing bioprinting with favorable cellular responses. 
    more » « less