skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Linear Convergent Decentralized Optimization with Compression
Communication compression has become a key strategy to speed up distributed optimization. However, existing decentralized algorithms with compression mainly focus on compressing DGD-type algorithms. They are unsatisfactory in terms of convergence rate, stability, and the capability to handle heterogeneous data. Motivated by primal-dual algorithms, this paper proposes the first \underline{L}in\underline{EA}r convergent \underline{D}ecentralized algorithm with compression, LEAD. Our theory describes the coupled dynamics of the inexact primal and dual update as well as compression error, and we provide the first consensus error bound in such settings without assuming bounded gradients. Experiments on convex problems validate our theoretical analysis, and empirical study on deep neural nets shows that LEAD is applicable to non-convex problems.  more » « less
Award ID(s):
1909523
PAR ID:
10308760
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ICLR 2021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a new primal-dual homotopy smoothing algorithm for a linearly constrained convex program, where neither the primal nor the dual function has to be smooth or strongly convex. The best known iteration complexity solving such a non-smooth problem is O(ε−1). In this paper, we show that by leveraging a local error bound condition on the dual function, the proposed algorithm can achieve a better primal convergence time of O 􏰕ε−2/(2+β) log2(ε−1)􏰖, where β ∈ (0, 1] is a local error bound parameter. As an example application of the general algorithm, we show that the distributed geometric median problem, which can be formulated as a constrained convex program, has its dual function non-smooth but satisfying the aforementioned local error bound condition with β = 1/2, therefore enjoying a convergence time of O 􏰕ε−4/5 log2(ε−1)􏰖. This result improves upon the O(ε−1) convergence time bound achieved by existing distributed optimization algorithms. Simulation experiments also demonstrate the performance of our proposed algorithm. 
    more » « less
  2. We consider a class of convex decentralized consensus optimization problems over connected multi-agent networks. Each agent in the network holds its local objective function privately, and can only communicate with its directly connected agents during the computation to find the minimizer of the sum of all objective functions. We propose a randomized incremental primal-dual method to solve this problem, where the dual variable over the network in each iteration is only updated at a randomly selected node, whereas the dual variables elsewhere remain the same as in the previous iteration. Thus, the communication only occurs in the neighborhood of the selected node in each iteration and hence can greatly reduce the chance of communication delay and failure in the standard fully synchronized consensus algorithms. We provide comprehensive convergence analysis including convergence rates of the primal residual and consensus error of the proposed algorithm, and conduct numerical experiments to show its performance using both uniform sampling and important sampling as node selection strategy. 
    more » « less
  3. Meka, Raghu (Ed.)
    We provide a general method to convert a "primal" black-box algorithm for solving regularized convex-concave minimax optimization problems into an algorithm for solving the associated dual maximin optimization problem. Our method adds recursive regularization over a logarithmic number of rounds where each round consists of an approximate regularized primal optimization followed by the computation of a dual best response. We apply this result to obtain new state-of-the-art runtimes for solving matrix games in specific parameter regimes, obtain improved query complexity for solving the dual of the CVaR distributionally robust optimization (DRO) problem, and recover the optimal query complexity for finding a stationary point of a convex function. 
    more » « less
  4. A recent line of research investigates how algorithms can be augmented with machine-learned predictions to overcome worst case lower bounds. This area has revealed interesting algorithmic insights into problems, with particular success in the design of competitive online algorithms. However, the question of improving algorithm running times with predictions has largely been unexplored. We take a first step in this direction by combining the idea of machine-learned predictions with the idea of "warm-starting" primal-dual algorithms. We consider one of the most important primitives in combinatorial optimization: weighted bipartite matching and its generalization to b-matching. We identify three key challenges when using learned dual variables in a primal-dual algorithm. First, predicted duals may be infeasible, so we give an algorithm that efficiently maps predicted infeasible duals to nearby feasible solutions. Second, once the duals are feasible, they may not be optimal, so we show that they can be used to quickly find an optimal solution. Finally, such predictions are useful only if they can be learned, so we show that the problem of learning duals for matching has low sample complexity. We validate our theoretical findings through experiments on both real and synthetic data. As a result we give a rigorous, practical, and empirically effective method to compute bipartite matchings. 
    more » « less
  5. We consider a class of multi-agent cooperative consensus optimization problems with local nonlinear convex constraints where only those agents connected by an edge can directly communicate, hence, the optimal consensus decision lies in the intersection of these private sets. We develop an asynchronous distributed accelerated primal-dual algorithm to solve the considered problem. The proposed scheme is the first asynchronous method with an optimal convergence guarantee for this class of problems, to the best of our knowledge. In particular, we provide an optimal convergence rate of $$\mathcal O(1/K)$$ for suboptimality, infeasibility, and consensus violation. 
    more » « less