On electron kinetic scales, ions and electrons decouple, and electron velocity shear on electron inertial length ∼de can trigger electromagnetic (EM) electron Kelvin–Helmholtz instability (EKHI). In this paper, we present an analytic study of EM EKHI in an inviscid collisionless plasma with a step-function electron shear flow. We show that in incompressible collisionless plasma, the ideal electron frozen-in condition E+ve×B/c=0 must be broken for the EM EKHI to occur. In a step-function electron shear flow, the ideal electron frozen-in condition is replaced by magnetic flux conservation, i.e., ∇×(E+ve×B/c)=0, resulting in a dispersion relation similar to that of the standard ideal and incompressible magnetohydrodynamics KHI. The magnetic field parallel to the electron streaming suppresses the EM EKHI due to magnetic tension. The threshold for the EM mode of the EKHI is (k·ΔUe)2>ne1+ne2ne1ne2[ne1(vAe1·k)2+ne2(vAe2·k)2], where vAe=B/(4πmene)1/2, ΔUe, and ne are the electron streaming velocity shear and densities, respectively. The growth rate of the EM mode is γem∼Ωce, which is the electron gyro-frequency.
more »
« less
Package Degradation’s Impact on SiC MOSFETs Loss: A Comparison of Kelvin and Non-Kelvin Designs
- Award ID(s):
- 1916776
- PAR ID:
- 10308837
- Date Published:
- Journal Name:
- 2021 IEEE Applied Power Electronics Conference and Exposition (APEC)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this study, we investigate the transition of semidiurnal Kelvin waves into Hybrid Kelvin-Edge (HKE) waves and associated generation of internal tides at widening shelves using theory, a realistic global baroclinic ocean model simulation, and quasi-realistic regional barotropic model simulations. Using the global model simulation, we identify several areas where a tidal HKE wave transition co-exists with internal wave generation. Of all areas considered, the Celtic Sea/Bay of Biscay shelf has the widest shelf and the strongest internal tide generation. We find that the global simulation agrees better with the theoretical Kelvin modes on the narrow than with the hybrid edge modes on the wide shelves. To help us understand the effect of complex, realistic bathymetry on the HKE wave transition, we perform quasi-realistic 1/25◦ barotropic simulations of the Celtic Sea/Bay of Biscay shelf areas. In these simulations, we gradually change the realistic bathymetry to a more idealized bathymetry. The idealized simulations show that the complex bathymetry steers the barotropic energy flux and causes standing wave patterns, which mask the HKE wave transition. Based on this analysis, we conclude that the HKE wave transition in the Celtic Sea/Bay of Biscay and other shelf areas in the global ocean is most likely masked by the effects of complex bathymetry and that offshelf baroclinic fluxes cannot be exclusively attributed to the HKE wave transition.more » « less
An official website of the United States government

