skip to main content


Title: The Utility of Satellites and Autonomous Remote Sensing Platforms for Monitoring Offshore Aquaculture Farms: A Case Study for Canopy Forming Kelps
The emerging sector of offshore kelp aquaculture represents an opportunity to produce biofuel feedstock to help meet growing energy demand. Giant kelp represents an attractive aquaculture crop due to its rapid growth and production, however precision farming over large scales is required to make this crop economically viable. These demands necessitate high frequency monitoring to ensure outplant success, maximum production, and optimum quality of harvested biomass, while the long distance from shore and large necessary scales of production makes in person monitoring impractical. Remote sensing offers a practical monitoring solution and nascent imaging technologies could be leveraged to provide daily products of the kelp canopy and subsurface structures over unprecedented spatial scales. Here, we evaluate the efficacy of remote sensing from satellites and aerial and underwater autonomous vehicles as potential monitoring platforms for offshore kelp aquaculture farms. Decadal-scale analyses of the Southern California Bight showed that high offshore summertime cloud cover restricts the ability of satellite sensors to provide high frequency direct monitoring of these farms. By contrast, daily monitoring of offshore farms using sensors mounted to aerial and underwater drones seems promising. Small Unoccupied Aircraft Systems (sUAS) carrying lightweight optical sensors can provide estimates of canopy area, density, and tissue nitrogen content on the time and space scales necessary for observing changes in this highly dynamic species. Underwater color imagery can be rapidly classified using deep learning models to identify kelp outplants on a longline farm and high acoustic returns of kelp pneumatocysts from side scan sonar imagery signal an ability to monitor the subsurface development of kelp fronds. Current sensing technologies can be used to develop additional machine learning and spectral algorithms to monitor outplant health and canopy macromolecular content, however future developments in vehicle and infrastructure technologies are necessary to reduce costs and transcend operational limitations for continuous deployment in an offshore setting.  more » « less
Award ID(s):
1831937
NSF-PAR ID:
10308840
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
7
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Kelp forests are complex underwater habitats that form the foundation of many nearshore marine environments and provide valuable services for coastal communities. Despite their ecological and economic importance, increasingly severe stressors have resulted in declines in kelp abundance in many regions over the past few decades, including the North Coast of California, USA. Given the significant and sustained loss of kelp in this region, management intervention is likely a necessary tool to reset the ecosystem and geospatial data on kelp dynamics are needed to strategically implement restoration projects. Because canopy‐forming kelp forests are distinguishable in aerial imagery, remote sensing is an important tool for documenting changes in canopy area and abundance to meet these data needs. We used small unoccupied aerial vehicles (UAVs) to survey emergent kelp canopy in priority sites along the North Coast in 2019 and 2020 to fill a key data gap for kelp restoration practitioners working at local scales. With over 4,300 hectares surveyed between 2019 and 2020, these surveys represent the two largest marine resource‐focused UAV surveys conducted in California to our knowledge. We present remote sensing methods using UAVs and a repeatable workflow for conducting consistent surveys, creating orthomosaics, georeferencing data, classifying emergent kelp and creating kelp canopy maps that can be used to assess trends in kelp canopy dynamics over space and time. We illustrate the impacts of spatial resolution on emergent kelp canopy classification between different sensors to help practitioners decide which data stream to select when asking restoration and management questions at varying spatial scales. Our results suggest that high spatial resolution data of emergent kelp canopy from UAVs have the potential to advance strategic kelp restoration and adaptive management.

     
    more » « less
  2. Sustainable aquaculture includes the aquaculture of non-fed crops that provide ecosystem services including nutrient extraction and water quality improvement. While shellfish are the most farmed sustainable aquaculture crops in the USA, shellfish farmers in the northeastern US have an interest in diversifying their crops and incorporating seaweeds into their farms. In this study, we worked with oyster farmers to investigate the potential for farming sugar kelp, Saccharina latissima , across different environmental regimes in coastal Rhode Island USA. Kelp seed spools were outplanted at two time points in the fall/winter of 2017 and 2018 at four sites and cultivated until harvest the following spring. Kelp performance (length, width, yield), tissue content, and nutrient extraction were determined for each line in each year; oyster growth was also measured monthly for one year at each site. We found that kelp could successfully grow in both shallow coastal lagoons and estuarine sites, although the timing of planting and placement of sites was important. Lines that were planted earlier (as soon as water temperatures<15°C) grew longer and yielded more biomass at harvest; overall, kelp blade yield ranged from 0.36 ± 0.01 to 11.26 ± 2.18 kg/m long line. We report little variation in the tissue quality (C:N) of kelp among sites, but differences in biomass production led to differences in nutrient extraction, which ranged from 0.28 ± 0.04 to 16.35 ± 4.26 g nitrogen/m long line and 8.93 ± 0.35 to 286.30 ± 74.66 g carbon/m long line. We found extensive variability in kelp growth within and between lines and between years, suggesting that crop consistency is a challenge for kelp farmers in the region. Our results suggest that, as there is a lower barrier in terms of permitting (versus starting a new aquaculture farm), it may be a worthwhile investment to add sugar kelp to existing oyster farms, provided they have suitable conditions. At current market rates of US$0.88-$3.30 per kg, farmers in southern New England have the potential to earn US$2,229 per 60 m longline. While seaweed aquaculture is growing, considerable barriers still exist that prevent wide-scale kelp aquaculture adoption by existing aquafarmers. 
    more » « less
  3. Large-scale continuous crop monitoring systems (CMS) are key to detect and manage agricultural production anomalies. Current CMS exploit meteorological and crop growth models, and satellite imagery, but have underutilized legacy sources of information such as operational crop expert surveys with long and uninterrupted records. We argue that crop expert assessments, despite their subjective and categorical nature, capture the complexities of assessing the “status” of a crop better than any model or remote sensing retrieval. This is because crop rating data naturally encapsulates the broad expert knowledge of many individual surveyors spread throughout the country, constituting a sophisticated network of “people as sensors” that provide consistent and accurate information on crop progress. We analyze data from the US Department of Agriculture (USDA) Crop Progress and Condition (CPC) survey between 1987 and 2019 for four major crops across the US, and show how to transform the original qualitative data into a continuous, probabilistic variable better suited to quantitative analysis. Although the CPC reflects the subjective perception of many surveyors at different locations, the underlying models that describe the reported crop status are statistically robust and maintain similar characteristics across different crops, exhibit long-term stability, and have nation-wide validity. We discuss the origin and interpretation of existing spatial and temporal biases in the survey data. Finally, we propose a quantitative Crop Condition Index based on the CPC survey and demonstrate how this index can be used to monitor crop status and provide earlier and more precise predictions of crop yields than official USDA forecasts released midseason. 
    more » « less
  4. null (Ed.)
    Phenology is a distinct marker of the impacts of climate change on ecosystems. Accordingly, monitoring the spatiotemporal patterns of vegetation phenology is important to understand the changing Earth system. A wide range of sensors have been used to monitor vegetation phenology, including digital cameras with different viewing geometries mounted on various types of platforms. Sensor perspective, view-angle, and resolution can potentially impact estimates of phenology. We compared three different methods of remotely sensing vegetation phenology—an unoccupied aerial vehicle (UAV)-based, downward-facing RGB camera, a below-canopy, upward-facing hemispherical camera with blue (B), green (G), and near-infrared (NIR) bands, and a tower-based RGB PhenoCam, positioned at an oblique angle to the canopy—to estimate spring phenological transition towards canopy closure in a mixed-species temperate forest in central Virginia, USA. Our study had two objectives: (1) to compare the above- and below-canopy inference of canopy greenness (using green chromatic coordinate and normalized difference vegetation index) and canopy structural attributes (leaf area and gap fraction) by matching below-canopy hemispherical photos with high spatial resolution (0.03 m) UAV imagery, to find the appropriate spatial coverage and resolution for comparison; (2) to compare how UAV, ground-based, and tower-based imagery performed in estimating the timing of the spring phenological transition. We found that a spatial buffer of 20 m radius for UAV imagery is most closely comparable to below-canopy imagery in this system. Sensors and platforms agree within +/− 5 days of when canopy greenness stabilizes from the spring phenophase into the growing season. We show that pairing UAV imagery with tower-based observation platforms and plot-based observations for phenological studies (e.g., long-term monitoring, existing research networks, and permanent plots) has the potential to scale plot-based forest structural measures via UAV imagery, constrain uncertainty estimates around phenophases, and more robustly assess site heterogeneity. 
    more » « less
  5. Non-crop vegetation, such as hedgerows and cover crops, are important on-farm diversification practices that support biodiversity and ecosystem services; however, information about their rates and patterns of adoption are scarce. We used satellite and aerial imagery coupled with machine learning classification to map the use of hedgerows/windbreaks and winter cover crops in California's Central Coast, a globally important agricultural area of intensive fresh produce production. We expected that adoption of both practices would be relatively low and unevenly distributed across the landscape, with higher levels of adoption found in marginal farmland and in less intensively cultivated areas where the pressure to remove non-crop vegetation may be lower. Our remote sensing classification revealed that only ~6% of farmland had winter cover crops in 2021 and 0.26% of farmland had hedgerows or windbreaks in 2018. Thirty-seven percent of ranch parcels had cover crops on at least 5% of the ranch while 22% of ranches had at least one hedgerow/windbreak. Nearly 16% of farmland had other annual winter crops, some of which could provide services similar to cover crops; however, 60% of farmland had bare soil over the winter study period, with the remainder of farmland classified as perennial crops or strawberries. Hotspot analysis showed significant areas of adoption of both practices in the hillier regions of all counties. Finally, qualitative interviews revealed that adoption patterns were likely driven by interrelated effects of topography, land values, and farming models, with organic, diversified farms implementing these practices in less ideal, lower-value farmland. This study demonstrates how remote sensing coupled with qualitative research can be used to map and interpret patterns of important diversification practices, with implications for tracking policy interventions and targeting resources to assist farmers motivated to expand adoption. 
    more » « less