null
(Ed.)
Abstract The CUORE experiment is a large bolometric array searching for the lepton number violating neutrino-less double beta decay ( $$0\nu \beta \beta $$ 0 ν β β ) in the isotope $$\mathrm {^{130}Te}$$ 130 Te . In this work we present the latest results on two searches for the double beta decay (DBD) of $$\mathrm {^{130}Te}$$ 130 Te to the first $$0^{+}_2$$ 0 2 + excited state of $$\mathrm {^{130}Xe}$$ 130 Xe : the $$0\nu \beta \beta $$ 0 ν β β decay and the Standard Model-allowed two-neutrinos double beta decay ( $$2\nu \beta \beta $$ 2 ν β β ). Both searches are based on a 372.5 kg $$\times $$ × yr TeO $$_2$$ 2 exposure. The de-excitation gamma rays emitted by the excited Xe nucleus in the final state yield a unique signature, which can be searched for with low background by studying coincident events in two or more bolometers. The closely packed arrangement of the CUORE crystals constitutes a significant advantage in this regard. The median limit setting sensitivities at 90% Credible Interval (C.I.) of the given searches were estimated as $$\mathrm {S^{0\nu }_{1/2} = 5.6 \times 10^{24} \, \mathrm {yr}}$$ S 1 / 2 0 ν = 5.6 × 10 24 yr for the $${0\nu \beta \beta }$$ 0 ν β β decay and $$\mathrm {S^{2\nu }_{1/2} = 2.1 \times 10^{24} \, \mathrm {yr}}$$ S 1 / 2 2 ν = 2.1 × 10 24 yr for the $${2\nu \beta \beta }$$ 2 ν β β decay. No significant evidence for either of the decay modes was observed and a Bayesian lower bound at $$90\%$$ 90 % C.I. on the decay half lives is obtained as: $$\mathrm {(T_{1/2})^{0\nu }_{0^+_2} > 5.9 \times 10^{24} \, \mathrm {yr}}$$ ( T 1 / 2 ) 0 2 + 0 ν > 5.9 × 10 24 yr for the $$0\nu \beta \beta $$ 0 ν β β mode and $$\mathrm {(T_{1/2})^{2\nu }_{0^+_2} > 1.3 \times 10^{24} \, \mathrm {yr}}$$ ( T 1 / 2 ) 0 2 + 2 ν > 1.3 × 10 24 yr for the $$2\nu \beta \beta $$ 2 ν β β mode. These represent the most stringent limits on the DBD of $$^{130}$$ 130 Te to excited states and improve by a factor $$\sim 5$$ ∼ 5 the previous results on this process.
more »
« less