skip to main content

Title: The Role of Elevated Terrain and the Gulf of Mexico in the Production of Severe Local Storm Environments over North America
Abstract The prevailing conceptual model for the production of severe local storm (SLS) environments over North America asserts that upstream elevated terrain and the Gulf of Mexico are both essential to their formation. This work tests this hypothesis using two prescribed-ocean climate model experiments with North American topography removed or the Gulf of Mexico converted to land and analyzes how SLS environments and associated synoptic-scale drivers (southerly Great Plains low-level jets, drylines, elevated mixed layers, and extratropical cyclones) change relative to a control historical run. Overall, SLS environments depend strongly on upstream elevated terrain but more weakly on the Gulf of Mexico. Removing elevated terrain substantially reduces SLS environments especially over the continental interior due to broad reductions in both thermodynamic instability and vertical wind shear, leaving a more zonally uniform residual distribution that is maximized near the Gulf coast and decays toward the continental interior. This response is associated with a strong reduction in synoptic-scale drivers and a cooler and drier mean-state atmosphere. Replacing the Gulf of Mexico with land modestly reduces SLS environments over the Great Plains (driven primarily thermodynamically) and increases them over the eastern United States (driven primarily kinematically), shifting the primary local maximum eastward into Illinois; it also eliminates the secondary, smaller local maximum over southern Texas. This response is associated with modest changes in synoptic-scale drivers and a warmer and drier lower troposphere. These experiments provide insight into the role of elevated terrain and the Gulf of Mexico in modifying the spatial distribution and seasonality of SLS environments.  more » « less
Award ID(s):
1648629 1648681
Author(s) / Creator(s):
 ;  ;  ;  ;  
Date Published:
Journal Name:
Journal of Climate
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Severe local storm (SLS) activity is known to occur within specific thermodynamic and kinematic environments. These environments are commonly associated with key synoptic-scale features—including southerly Great Plains low-level jets, drylines, elevated mixed layers, and extratropical cyclones—that link the large-scale climate to SLS environments. This work analyzes spatiotemporal distributions of both extreme values of SLS environmental parameters and synoptic-scale features in the ERA5 reanalysis and in the Community Atmosphere Model, version 6 (CAM6), historical simulation during 1980–2014 over North America. Compared to radiosondes, ERA5 successfully reproduces SLS environments, with strong spatiotemporal correlations and low biases, especially over the Great Plains. Both ERA5 and CAM6 reproduce the climatology of SLS environments over the central United States as well as its strong seasonal and diurnal cycles. ERA5 and CAM6 also reproduce the climatological occurrence of the synoptic-scale features, with the distribution pattern similar to that of SLS environments. Compared to ERA5, CAM6 exhibits a high bias in convective available potential energy over the eastern United States primarily due to a high bias in surface moisture and, to a lesser extent, storm-relative helicity due to enhanced low-level winds. Composite analysis indicates consistent synoptic anomaly patterns favorable for significant SLS environments over much of the eastern half of the United States in both ERA5 and CAM6, though the pattern differs for the southeastern United States. Overall, our results indicate that both ERA5 and CAM6 are capable of reproducing SLS environments as well as the synoptic-scale features and transient events that generate them. 
    more » « less
  2. Abstract

    Elevated spring and summer rainfall in the U.S. Midwest is often associated with a strong Great Plains low-level jet (GPLLJ), which transports moist air northward to the region from the Gulf of Mexico. While the intensity of hourly precipitation extremes depends on local moisture availability and vertical velocity, sustained moisture convergence on longer time scales depends on horizontal moisture advection from remote sources. Therefore, the magnitude of moisture convergence in the Midwest depends in part on the humidity in these moisture source regions. Past work has identified the time-mean spatial distribution of moisture sources for the Midwest and studied how this pattern changes in years with anomalous rainfall. Here, using reanalysis products and an Eulerian moisture tracking model, we seek to increase physical understanding of this moisture source variability by linking it to the GPLLJ, which has been studied extensively. We find that on interannual time scales, an anomalously strong GPLLJ is associated with a shift in the distribution of moisture sources from land to ocean, with most of the anomalous moisture transported to—and converged in—the Midwest originating from the Atlantic Ocean. This effect is more pronounced on synoptic time scales, when almost all anomalous moisture transported to the region originates over the ocean. We also show that the observed positive trend in oceanic moisture contribution to the Midwest from 1979 to 2020 is consistent with a strengthening of the GPLLJ over the same period. We conclude by outlining how projected changes in a region’s upstream moisture sources may be useful for understanding changes in local precipitation variability.

    Significance Statement

    In this work, we study how the origin of moisture that forms precipitation in the U.S. Midwest covaries with large-scale atmospheric circulation. Our results show that an intensification of the mean winds tends to increase the proportion of total rainfall that originates from the ocean. This analysis may help to constrain future projections of rainfall extremes in the central United States, as projected changes in humidity over the ocean are typically more robust and better understood than those over land.

    more » « less
  3. Abstract

    This first multi‐year investigation focuses on bores over the southern North China Plain during the 2015–2019 warm seasons. Bore structure depended on location with undular bores tending to occur close to the coast and non‐undular bores to the west near elevated terrain. Bores were most likely to occur during June and July when convection is active. While bore frequency over the Southern Great Plains (SGP) of U.S. is linked to the region's nocturnal low‐level jet, the bores herein were sensitive to the synoptic regime with ∼80% occurring during 4‐to‐5‐day periods under three different synoptic regimes. The bores had shorter durations than their SGP counterparts and a far wider range in their direction of propagation. Overall, these findings find regional differences in bores' frequency, movement, and structure serving an impetus for future investigations of nocturnal mesoscale convective systems and bores over China and other locations worldwide.

    more » « less
  4. This research applies an automated mesoscale convective system (MCS) segmentation, classification, and tracking approach to composite radar reflectivity mosaic images that cover the contiguous United States (CONUS) and span a relatively long study period of 22 years (1996–2017). These data afford a novel assessment of the seasonal and interannual variability of MCSs. Additionally, hourly precipitation data from 16 of those years (2002–17) are used to systematically examine rainfall associated with radar-derived MCS events. The attributes and occurrence of MCSs that pass over portions of the CONUS east of the Continental Divide (ECONUS), as well as five author-defined subregions—North Plains, High Plains, Corn Belt, Northeast, and Mid-South—are also examined. The results illustrate two preferred regions for MCS activity in the ECONUS: 1) the Mid-South and Gulf Coast and 2) the Central Plains and Midwest. MCS occurrence and MCS rainfall display a marked seasonal cycle, with most of the regions experiencing these events primarily during the warm season (May–August). Additionally, MCS rainfall was responsible for over 50% of annual and seasonal rainfall for many locations in the ECONUS. Of particular importance, the majority of warm-season rainfall for regions with high agricultural land use (Corn Belt) and important aquifer recharge properties (High Plains) is attributable to MCSs. These results reaffirm that MCSs are a significant aspect of the ECONUS hydroclimate.

    more » « less
  5. Abstract

    Summer rainfall in the southeast Prairie Pothole Region (SEPPR) is an important part of a vital wetland ecosystem that various species use as their habitat. We examine sources and pathways for summer rainfall moisture, large‐scale features influencing moisture delivery, and large‐scale connections related to summer moisture using the Hybrid Single‐Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Analysis of HYSPLIT back trajectories shows that land is the primary moisture source for summer rainfall events indicating moisture recycling plays an important role in precipitation generation. The Great Plains Low‐Level Jet/Maya Express is the most prominent moisture pathway. It impacts events sourced by land and the Gulf of Mexico (GoM), the secondary moisture source. There is a coupling between land, atmosphere, and ocean conveyed by large‐scale climate connections between rainfall events and sea surface temperature (SST), Palmer Drought Severity Index, and 850‐mb heights. Land‐sourced events have a connection to the northern Pacific and northwest Atlantic Oceans, soil moisture over the central U.S., and low‐pressure systems over the SEPPR. GoM‐sourced events share the connection to soil moisture over the central U.S. but also show connections to SSTs in the North Pacific and Atlantic Oceans and the GoM, soil moisture in northern Mexico, and 850‐mb heights in the eastern Pacific Ocean. Both types of events show connections to high 850‐mb heights in the Caribbean which may reflect a connection to Bermuda High. These insights into moisture sources and pathways can improve skill in SEPPR summer rainfall predictions and benefit natural resource managers in the region.

    more » « less