skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Search for: All records

Award ID contains: 1648629

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Tropical modes of variability, including the Madden‐Julian Oscillation (MJO) and the El Niño‐Southern Oscillation (ENSO), are challenging to represent in climate models. Previous studies suggest their fundamental dependence on zonal asymmetry, but such dependence is rarely addressed with fully coupled ocean dynamics. This study fills the gap by using fully coupled, idealized Community Earth System Model (CESM) and comparing two nominally ocean‐covered configurations with and without a meridional boundary. For the MJO‐like intraseasonal mode, its separation from equatorial Kelvin waves and the eastward propagation of its convective and dynamic signals depend on the zonal gradient of the mean state. For the ENSO‐like interannual mode, in the absence of the ocean's meridional boundary, a circum‐equatorial dominant mode emerges with distinct ocean dynamics. The interpretation of the dependence of these modes on zonal asymmetry is relevant to their representation in realistic climate models.

    more » « less
  2. Abstract

    Idealized models can reveal insights into Earth’s climate system by reducing its complexities. However, their potential is undermined by the scarcity of fully coupled idealized models with components comparable to contemporary, comprehensive Earth System Models. To fill this gap, we compare and contrast the climates of two idealized planets which build on the Simpler Models initiative of the Community Earth System Model (CESM). Using the fully coupled CESM, the Aqua configuration is ocean‐covered except for two polar land caps, and the Ridge configuration has an additional pole‐to‐pole grid‐cell‐wide continent. Contrary to most sea surface temperature profiles assumed for atmosphere‐only aquaplanet experiments with the thermal maximum on the equator, the coupled Aqua configuration is characterized by a global cold belt of wind‐driven equatorial upwelling, analogous to the eastern Pacific cold tongue. The presence of the meridional boundary on Ridge introduces zonal asymmetry in thermal and circulation features, similar to the contrast between western and eastern Pacific. This zonal asymmetry leads to a distinct climate state from Aqua, cooled by ∼2°C via the radiative feedback of clouds and water vapor. The meridional boundary of Ridge is also crucial for producing a more Earth‐like climate state compared to Aqua, including features of atmospheric and ocean circulation, the seasonal cycle of the Intertropical Convergence Zone, and the meridional heat transport. The mean climates of these two basic configurations provide a baseline for exploring other idealized ocean geometries, and their application for investigating various features and scale interactions in the coupled climate system.

    more » « less
  3. Abstract

    Advances in high‐performance computing make it possible to run atmospheric general circulation models (AGCMs) over an increasingly wider range of grid resolutions, using either globally uniform or variable‐resolution grids. In principle, this is an exciting opportunity to resolve atmospheric process and scales in a global model and in unprecedented detail, but in practice this grid flexibility is incompatible with the non‐ or weakly converging solutions with increasing horizontal resolution that have long characterized AGCMs. In the the Community Atmosphere Model (CAM), there are robust sensitivities to horizontal resolution that have persisted since the model was first introduced over thirty years ago; the atmosphere progressively dries and becomes less cloudy with resolution, and parametrized deep convective precipitation decreases at the expense of stratiform precipitation. This study documents a convergence experiment using CAM, version 6, and argues that a unifying cause, the sensitivity of resolved dynamical modes to native grid resolution, feeds back into other model components and explains these robust sensitivities to resolution. The increasing magnitudes of resolved vertical velocities with resolution are shown to fit an analytic scaling derived for the equations of motion at hydrostatic scales. This trend in vertical velocities results in an increase in resolved upward moisture fluxes at cloud base, balanced by an increase in stratiform precipitation rates with resolution. Compensating, greater magnitude subsiding motion with resolution has previously been shown to dry out the atmosphere and reduce cloud cover. Here, it is shown that both the increase in condensational heating from stratiform cloud formation and greater subsidence drying contribute to an increase in atmospheric stability with resolution, reducing the activity of parametrized convection. The impact of changing the vertical velocity field with native grid resolution cannot be ignored in any effort to recover convergent solutions in AGCMs, and, in particular, the development of scale‐aware physical parametrizations.

    more » « less
  4. Abstract The prevailing conceptual model for the production of severe local storm (SLS) environments over North America asserts that upstream elevated terrain and the Gulf of Mexico are both essential to their formation. This work tests this hypothesis using two prescribed-ocean climate model experiments with North American topography removed or the Gulf of Mexico converted to land and analyzes how SLS environments and associated synoptic-scale drivers (southerly Great Plains low-level jets, drylines, elevated mixed layers, and extratropical cyclones) change relative to a control historical run. Overall, SLS environments depend strongly on upstream elevated terrain but more weakly on the Gulf of Mexico. Removing elevated terrain substantially reduces SLS environments especially over the continental interior due to broad reductions in both thermodynamic instability and vertical wind shear, leaving a more zonally uniform residual distribution that is maximized near the Gulf coast and decays toward the continental interior. This response is associated with a strong reduction in synoptic-scale drivers and a cooler and drier mean-state atmosphere. Replacing the Gulf of Mexico with land modestly reduces SLS environments over the Great Plains (driven primarily thermodynamically) and increases them over the eastern United States (driven primarily kinematically), shifting the primary local maximum eastward into Illinois; it also eliminates the secondary, smaller local maximum over southern Texas. This response is associated with modest changes in synoptic-scale drivers and a warmer and drier lower troposphere. These experiments provide insight into the role of elevated terrain and the Gulf of Mexico in modifying the spatial distribution and seasonality of SLS environments. 
    more » « less
  5. null (Ed.)
    Abstract Severe local storm (SLS) activity is known to occur within specific thermodynamic and kinematic environments. These environments are commonly associated with key synoptic-scale features—including southerly Great Plains low-level jets, drylines, elevated mixed layers, and extratropical cyclones—that link the large-scale climate to SLS environments. This work analyzes spatiotemporal distributions of both extreme values of SLS environmental parameters and synoptic-scale features in the ERA5 reanalysis and in the Community Atmosphere Model, version 6 (CAM6), historical simulation during 1980–2014 over North America. Compared to radiosondes, ERA5 successfully reproduces SLS environments, with strong spatiotemporal correlations and low biases, especially over the Great Plains. Both ERA5 and CAM6 reproduce the climatology of SLS environments over the central United States as well as its strong seasonal and diurnal cycles. ERA5 and CAM6 also reproduce the climatological occurrence of the synoptic-scale features, with the distribution pattern similar to that of SLS environments. Compared to ERA5, CAM6 exhibits a high bias in convective available potential energy over the eastern United States primarily due to a high bias in surface moisture and, to a lesser extent, storm-relative helicity due to enhanced low-level winds. Composite analysis indicates consistent synoptic anomaly patterns favorable for significant SLS environments over much of the eastern half of the United States in both ERA5 and CAM6, though the pattern differs for the southeastern United States. Overall, our results indicate that both ERA5 and CAM6 are capable of reproducing SLS environments as well as the synoptic-scale features and transient events that generate them. 
    more » « less
  6. Abstract This work examines the effect of horizontal resolution and topography on the North American monsoon (NAM) in experiments with an atmospheric general circulation model. Observations are used to evaluate the fidelity of the representation of the monsoon in simulations from the Community Atmosphere Model version 5 (CAM5) with a standard 1.0° grid spacing and a high-resolution 0.25° grid spacing. The simulated monsoon has some realistic features, but both configurations also show precipitation biases. The default 1.0° grid spacing configuration simulates a monsoon with an annual cycle and intensity of precipitation within the observational range, but the monsoon begins and ends too gradually and does not reach far enough north. This study shows that the improved representation of topography in the high-resolution (0.25° grid spacing) configuration improves the regional circulation and therefore some aspects of the simulated monsoon compared to the 1.0° counterpart. At higher resolution, CAM5 simulates a stronger low pressure center over the American Southwest, with more realistic low-level wind flow than in the 1.0° configuration. As a result, the monsoon precipitation increases as does the amplitude of the annual cycle of precipitation. A moisture analysis sheds light on the monsoon dynamics, indicating that changes in the advection of enthalpy and moist static energy drive the differences between monsoon precipitation in CAM5 1.0° compared to the 0.25° configuration. Additional simulations confirm that these improvements are mainly due to the topographic influence on the low-level flow through the Gulf of California, and not only the increase in horizontal resolution. 
    more » « less